Soil ingestion can be a major exposure route for humans to many immobile soil contaminants. Exposure to soil contaminants can be overestimated if oral bioavailability is not taken into account. Several in vitro digestion models simulating the human gastrointestinal tract have been developed to assess mobilization of contaminants from soil during digestion, i.e., bioaccessibility. Bioaccessibility is a crucial step in controlling the oral bioavailability for soil contaminants. To what extent in vitro determination of bioaccessibility is method dependent has, until now, not been studied. This paper describes a multi-laboratory comparison and evaluation of five in vitro digestion models. Their experimental design and the results of a round robin evaluation of three soils, each contaminated with arsenic, cadmium, and lead, are presented and discussed. A wide range of bioaccessibility values were found for the three soils: for As 6-95%, 1-19%, and 10-59%; for Cd 7-92%, 5-92%, and 6-99%; and for Pb 4-91%, 1-56%, and 3-90%. Bioaccessibility in many cases is less than 50%, indicating that a reduction of bioavailability can have implications for health risk assessment. Although the experimental designs of the different digestion systems are distinct, the main differences in test results of bioaccessibility can be explained on the basis of the applied gastric pH. High values are typically observed for a simple gastric method, which measures bioaccessibility in the gastric compartment at low pHs of 1.5. Other methods that also apply a low gastric pH, and include intestinal conditions, produce lower bioaccessibility values. The lowest bioaccessibility values are observed for a gastrointestinal method which employs a high gastric pH of 4.0.
TIM-1 is a powerful tool for supplying valuable information about the effects of various gastrointestinal conditions on biopharmaceutical behavior and efficacy of drug delivery systems in the development of oral formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.