The time- or temperature-resolved detector signal from a thermoluminescence dosimeter can reveal additional information about circumstances of an exposure to ionising irradiation. We present studies using deep neural networks to estimate the date of a single irradiation with 12 mSv within a monitoring interval of 42 days from glow curves of novel TL-DOS personal dosimeters developed by the Materialprüfungsamt NRW in cooperation with TU Dortmund University. Using a deep convolutional network, the irradiation date can be predicted from raw time-resolved glow curve data with an uncertainty of roughly 1–2 days on a 68% confidence level without the need for a prior transformation into temperature space and a subsequent glow curve deconvolution (GCD). This corresponds to a significant improvement in prediction accuracy compared to a prior publication, which yielded a prediction uncertainty of 2–4 days using features obtained from a GCD as input to a neural network.
Personal dosemeters using thermoluminescence detectors can provide information about the irradiation event beyond the pure dose estimation, which is valuable for improving radiation protection measures. In the presented study, the glow curves of the novel TL-DOS dosemeters developed by the Materialprüfungsamt NRW in cooperation with the TU Dortmund University are analysed using deep learning approaches to predict the irradiation date of a single-dose irradiation of 10 mGy within a monitoring interval of 41 d. In contrast of previous work, the glow curves are measured using the current routine read-out process by pre-heating the detectors before the read-out. The irradiation dates are predicted with an accuracy of 2–5 d by the deep learning algorithm. Furthermore, the importance of the input features is evaluated using Shapley values to increase the interpretability of the neural network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.