Bladder cancer (BC) is characterized by high incidence and recurrence rates together with genomic instability and elevated mutation degree. Currently, cystoscopy combined with cytology is routinely used for diagnosis, prognosis and disease surveillance. Such an approach is often associated with several side effects, discomfort for the patient and high economic burden. Thus, there is an essential demand of non-invasive, sensitive, fast and inexpensive biomarkers for clinical management of BC patients. In this context, liquid biopsy represents a very promising tool that has been widely investigated over the last decade. Liquid biopsy will likely be at the basis of patient selection for precision medicine, both in terms of treatment choice and real-time monitoring of therapeutic effects. Several different urinary biomarkers have been proposed for liquid biopsy in BC, including DNA methylation and mutations, protein-based assays, non-coding RNAs and mRNA signatures. In this review, we summarized the state of the art on different available tests concerning their potential clinical applications for BC detection, prognosis, surveillance and response to therapy.
Although appreciable attempts in screening and diagnostic approaches have been achieved, prostate cancer (PCa) remains a widespread malignancy, representing the second leading cause of cancer-related death in men. Drugs currently used in PCa therapy initially show a potent anti-tumor effect, but frequently induce resistance and PCa progresses toward metastatic castration-resistant forms (mCRPC), virtually incurable. Liquid biopsy has emerged as an attractive and promising strategy complementary to invasive tissue biopsy to guide PCa diagnosis and treatment. Liquid biopsy shows the ability to represent the tumor microenvironment, allow comprehensive information and follow-up the progression of the tumor, enabling the development of different treatment strategies as well as permitting the monitoring of therapy response. Liquid biopsy, indeed, is endowed with a significant potential to modify PCa management. Several blood biomarkers could be analyzed for diagnostic, prognostic and predictive purposes, including circulating tumor cells (CTCs), extracellular vesicles (EVs), circulating tumor DNA (ctDNA) and RNA (ctRNA). In addition, several other body fluids may be adopted (i.e., urine, sperm, etc.) beyond blood. This review dissects recent advancements and future perspectives of liquid biopsies, highlighting their strength and weaknesses in PCa management.
Widespread use of PSA as the standard tool for prostate cancer (PCa) diagnosis led to a high rate of overdiagnosis and overtreatment. In this study, we evaluated the performance of the prostate health index (PHI) and multiparametric magnetic resonance imaging (mpMRI) for the prediction of positive biopsy and of high-grade PCa at radical prostatectomy (RP). To this end, we prospectively enrolled 196 biopsy-naïve patients who underwent mpMRI. A subgroup of 116 subjects with biopsy-proven PCa underwent surgery. We found that PHI significantly outperformed both PI-RADS score (difference in AUC: 0.14; p < 0.001) and PHI density (difference in AUC: 0.08; p = 0.002) in the ability to predict positive biopsy with a cut-off value of 42.7 as the best threshold. Conversely, comparing the performance in the identification of clinically significant prostate cancer (csPCa) at RP, we found that PHI ≥61.68 and PI-RADS score ≥4 were able to identify csPCa (Gleason score ≥7 (3 + 4)) both alone and added to a base model including age, PSA, fPSA-to-tPSA ratio and prostate volume. In conclusion, PHI had a better ability than PI-RADS score to predict positive biopsy, whereas it had a comparable performance in the identification of pathological csPCa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.