Little is known about the genetic architecture of traits affecting educational attainment other than cognitive ability. We used Genomic Structural Equation Modeling and prior genome-wide association studies (GWAS) of educational attainment ( n = 1,131,881) and cognitive test performance ( n = 257,841) to estimate SNP associations with educational attainment variation that is independent of cognitive ability.We identified 157 genome-wide significant loci and a polygenic architecture accounting for 57% of genetic variance in educational attainment. Non-cognitive genetics were enriched in the same brain tissues and cell types as cognitive performance but showed different associations with gray-matter brain volumes. Non-cognitive genetics were further distinguished by associations with personality traits, less risky behavior,and increased risk for certain psychiatric disorders.For socioeconomic success and longevity, non-cognitive and cognitive-performance genetics demonstrated similar-magnitude associations. By conducting a GWAS of a phenotype that was not directly measured, we offer a first view of genetic architecture of non-cognitive skills influencing educational success.
The use of spoken and written language is a fundamental human capacity. Individual differences in reading- and language-related skills are influenced by genetic variation, with twin-based heritability estimates of 30 to 80% depending on the trait. The genetic architecture is complex, heterogeneous, and multifactorial, but investigations of contributions of single-nucleotide polymorphisms (SNPs) were thus far underpowered. We present a multicohort genome-wide association study (GWAS) of five traits assessed individually using psychometric measures (word reading, nonword reading, spelling, phoneme awareness, and nonword repetition) in samples of 13,633 to 33,959 participants aged 5 to 26 y. We identified genome-wide significant association with word reading (rs11208009, P = 1.098 × 10 −8 ) at a locus that has not been associated with intelligence or educational attainment. All five reading-/language-related traits showed robust SNP heritability, accounting for 13 to 26% of trait variability. Genomic structural equation modeling revealed a shared genetic factor explaining most of the variation in word/nonword reading, spelling, and phoneme awareness, which only partially overlapped with genetic variation contributing to nonword repetition, intelligence, and educational attainment. A multivariate GWAS of word/nonword reading, spelling, and phoneme awareness maximized power for follow-up investigation. Genetic correlation analysis with neuroimaging traits identified an association with the surface area of the banks of the left superior temporal sulcus, a brain region linked to the processing of spoken and written language. Heritability was enriched for genomic elements regulating gene expression in the fetal brain and in chromosomal regions that are depleted of Neanderthal variants. Together, these results provide avenues for deciphering the biological underpinnings of uniquely human traits.
Reading and writing are crucial life skills but roughly one in ten children are affected by dyslexia, which can persist into adulthood. Family studies of dyslexia suggest heritability up to 70%, yet few convincing genetic markers have been found. Here we performed a genome-wide association study of 51,800 adults self-reporting a dyslexia diagnosis and 1,087,070 controls and identified 42 independent genome-wide significant loci: 15 in genes linked to cognitive ability/educational attainment, and 27 new and potentially more specific to dyslexia. We validated 23 loci (13 new) in independent cohorts of Chinese and European ancestry. Genetic etiology of dyslexia was similar between sexes, and genetic covariance with many traits was found, including ambidexterity, but not neuroanatomical measures of language-related circuitry. Dyslexia polygenic scores explained up to 6% of variance in reading traits, and might in future contribute to earlier identification and remediation of dyslexia.
Behaviors, traits and characteristics are transmitted from parents to offspring because of complex genetic and non-genetic processes. We review genetic and non-genetic mechanisms of intergenerational transmission of psychopathology and parenting and focus on recent methodological advances in disentangling genetic and non-genetic factors. In light of this review, we propose that future studies on intergenerational transmission should aim to disentangle genetic and non-genetic transmission, take a long-term longitudinal perspective, and focus on paternal and maternal intergenerational transmission. We present four large longitudinal cohort studies within the Consortium on Individual Development, which together address many of these methodological challenges. These four cohort studies aim to examine the extent to which genetic and non-genetic transmission from the parental generation shapes parenting behavior and psychopathology in the next generation, as well as the extent to which self-regulation and social competence mediate this transmission. Conjointly, these four cohorts provide a comprehensive approach to the study of intergenerational transmission.
Educational attainment (EA) is influenced by cognitive abilities and by other characteristics and traits. However little is known about the genetic architecture of these "non-cognitive" contributions to EA. Here, we use Genomic Structural Equation Modelling and results of prior genome-wide association studies (GWASs) of EA (N = 1,131,881) and cognitive test performance (N = 257,841) to estimate SNP associations with variation in EA that is independent of cognitive ability. We identified 157 genome-wide significant loci and a polygenic architecture accounting for 57% of genetic variance in EA. Phenotypic and biological annotation revealed that (1) both cognitive and non-cognitive contributions to EA were genetically correlated with socioeconomic success and longevity; and (2) non-cognitive contributions to EA were related to personality, decision making, risk-behavior, and increased risk for psychiatric disorders; (3) non-cognitive and cognitive contributions to EA were enriched in the same tissues and cell types, but (4) showed different associations with graymatter neuroimaging phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.