Various common genetic susceptibility loci have been identified for breast cancer; however, it is unclear how they combine with lifestyle/environmental risk factors to influence risk. We undertook an international collaborative study to assess gene-environment interaction for risk of breast cancer. Data from 24 studies of the Breast Cancer Association Consortium were pooled. Using up to 34,793 invasive breast cancers and 41,099 controls, we examined whether the relative risks associated with 23 single nucleotide polymorphisms were modified by 10 established environmental risk factors (age at menarche, parity, breastfeeding, body mass index, height, oral contraceptive use, menopausal hormone therapy use, alcohol consumption, cigarette smoking, physical activity) in women of European ancestry. We used logistic regression models stratified by study and adjusted for age and performed likelihood ratio tests to assess gene–environment interactions. All statistical tests were two-sided. We replicated previously reported potential interactions between LSP1-rs3817198 and parity (Pinteraction = 2.4×10−6) and between CASP8-rs17468277 and alcohol consumption (Pinteraction = 3.1×10−4). Overall, the per-allele odds ratio (95% confidence interval) for LSP1-rs3817198 was 1.08 (1.01–1.16) in nulliparous women and ranged from 1.03 (0.96–1.10) in parous women with one birth to 1.26 (1.16–1.37) in women with at least four births. For CASP8-rs17468277, the per-allele OR was 0.91 (0.85–0.98) in those with an alcohol intake of <20 g/day and 1.45 (1.14–1.85) in those who drank ≥20 g/day. Additionally, interaction was found between 1p11.2-rs11249433 and ever being parous (Pinteraction = 5.3×10−5), with a per-allele OR of 1.14 (1.11–1.17) in parous women and 0.98 (0.92–1.05) in nulliparous women. These data provide first strong evidence that the risk of breast cancer associated with some common genetic variants may vary with environmental risk factors.
IntroductionThe Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer (kConFab) is a multidisciplinary, collaborative framework for the investigation of familial breast cancer. Based in Australia, the primary aim of kConFab is to facilitate high-quality research by amassing a large and comprehensive resource of epidemiological and clinical data with biospecimens from individuals at high risk of breast and/or ovarian cancer, and from their close relatives.MethodsEpidemiological, family history and lifestyle data, as well as biospecimens, are collected from multiple-case breast cancer families ascertained through family cancer clinics in Australia and New Zealand. We used the Tyrer-Cuzick algorithms to assess the prospective risk of breast cancer in women in the kConFab cohort who were unaffected with breast cancer at the time of enrolment in the study.ResultsOf kConFab's first 822 families, 518 families had multiple cases of female breast cancer alone, 239 had cases of female breast and ovarian cancer, 37 had cases of female and male breast cancer, and 14 had both ovarian cancer as well as male and female breast cancer. Data are currently held for 11,422 people and germline DNAs for 7,389. Among the 812 families with at least one germline sample collected, the mean number of germline DNA samples collected per family is nine. Of the 747 families that have undergone some form of mutation screening, 229 (31%) carry a pathogenic or splice-site mutation in BRCA1 or BRCA2. Germline DNAs and data are stored from 773 proven carriers of BRCA1 or BRCA1 mutations. kConFab's fresh tissue bank includes 253 specimens of breast or ovarian tissue – both normal and malignant – including 126 from carriers of BRCA1 or BRCA2 mutations.ConclusionThese kConFab resources are available to researchers anywhere in the world, who may apply to kConFab for biospecimens and data for use in ethically approved, peer-reviewed projects. A high calculated risk from the Tyrer-Cuzick algorithms correlated closely with the subsequent occurrence of breast cancer in BRCA1 and BRCA2 mutation positive families, but this was less evident in families in which no pathogenic BRCA1 or BRCA2 mutation has been detected.
The role of a germ-line BRCA2 mutation in the development of prostate cancer is established, but the clinical presentation linked to outcome for this group of men has not been well described.A total of 148 men from 1,423 families were ascertained from the kConFab consortium. Each participant met the following criteria: (i) a verified case of prostate cancer; (ii) confirmed as either a carrier or noncarrier of a family-specific BRCA pathogenic mutation; (iii) comprehensive clinical and treatment data were available. Clinical data were linked to treatment received and overall survival was analyzed by Kaplan-Meier.Prostate cancer in men from breast cancer-prone families has a high risk of disease progression, irrespective of mutation status. BRCA2 mutation carriers have an increased risk of death and prostate cancer-related death [HR (95% CI) 4.5 (2.12-9.52), P ¼ 8.9 Â 10 À5 ] by comparison with noncarriers. Serum PSA readings taken prior to diagnosis in 90% of all men, age adjusted, were above clinical significance. Following D'Amico risk stratification, 77.5% of BRCA2 mutation carriers and 58.7% of noncarriers had high-risk disease. BRCA2 mutation status was also an independent prognostic indicator of overall survival. Furthermore, there was a poor overall survival outcome for both the BRCA2 mutation carriers and noncarriers given curative-intent treatment.All men in breast cancer-prone families are at risk of developing aggressive prostate cancer. This information is significant and should be included in discussions with genetic counselors and medical professionals when discussing prostate cancer treatment options for men in these families, irrespective of mutation status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.