Non-enzymatic glycosylation or glycation of proteins to form advanced glycation endproducts (AGE) has been proposed as a process which provides a signal for the degradation of proteins. Despite this, the AGE which act a recognition factor for receptor-mediated endocytosis and degradation of glycated proteins by monocytes and macrophages has not been identified. Methylglyoxal, a reactive alpha-oxoaldehyde and physiological metabolite, reacted irreversibly with arginine residues in proteins to form Ndelta-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine and Ndelta-(5-methyl-4-imidazolon-2-yl)ornithine residues. Human serum albumin minimally-modified with methylglyoxal (MG(min)-HSA) was bound by cell surface receptors of human monocytic THP-1 cells in vitro at 4 degrees C: the binding constant K(d) value was 377 +/- 35 nM and the number of receptors per cell was 5.9 +/- 0.2 X 10(5) (n = 12). N alpha-Acetyl-Ndelta-(5-hydro-5-methyl-4-imidazolon-2-yl)orni thine displaced MG(min)-HSA from THP-1 cells, suggesting that the Ndelta-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine residue was the receptor recognition factor. At 37 degrees C, MG(min)-HSA was internalised by THP-1 cells and degraded. Similar binding and degradation of human serum albumin modified by glucose-derived AGE was found but only when highly modified. MG(min)-HSA, therefore, is the first example of a protein minimally-modified by AGE-like compounds that binds specifically to monocyte receptors. The irreversible modification of proteins by methylglyoxal is a potent signal for the degradation of proteins by monocytic cells in which the arginine derivative, Ndelta-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine, is the receptor recognition factor. This factor is not present in glucose-modified proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.