Prolonged exposure to wide (thin) bodies causes a perceptual aftereffect such that subsequently viewed bodies appear thinner (wider) than they actually are. This phenomenon is known as visual adaptation. We used the adaptation paradigm to examine the gender selectivity of the neural mechanisms encoding body size and shape. Observers adjusted female and male test bodies to appear normal-sized both before and after adaptation to bodies digitally altered to appear heavier or lighter. In Experiment 1, observers adapted simultaneously to bodies of each gender distorted in opposite directions, e.g., thin females and wide males. The direction of resultant aftereffects was contingent on the gender of the test stimulus, such that in this example female test bodies appeared wider while male test bodies appeared thinner. This indicates at least some separation of the neural mechanisms processing body size and shape for the two genders. In Experiment 2, adaptation involved either wide females, thin females, wide males or thin males. Aftereffects were present in all conditions, but were stronger when test and adaptation genders were congruent, suggesting some overlap in the tuning of gender-selective neural mechanisms. Given that visual adaptation has been implicated in real-world examples of body size and shape misperception (e.g., in anorexia nervosa or obesity), these results may have implications for the development of body image therapies based on the adaptation model.
Prolonged exposure to wide (thin) bodies causes a perceptual aftereffect such that subsequently-viewed bodies appear thinner (wider) than they actually are. This phenomenon is known as visual adaptation. We used the adaptation paradigm to examine the gender selectivity of the neural mechanisms encoding body size and shape. Observers adjusted female and male test bodies to appear normal-sized both before and after adaptation to bodies digitally altered to appear heavier or lighter. In Experiment 1, observers adapted simultaneously to bodies of each gender distorted in opposite directions, e.g. thin females and wide males. The direction of resultant aftereffects was contingent on the gender of the test stimulus, such that in this example female test bodies appeared wider while male test bodies appeared thinner. This indicates at least some separation of the neural mechanisms processing body size and shape for the two genders. In Experiment 2, adaptation involved either wide females, thin females, wide males or thin males. Aftereffects were present in all conditions, but were stronger when test and adaptation genders were congruent, suggesting some overlap in the tuning of gender-selective neural mechanisms. Given that visual adaptation has been implicated in real-world examples of body size and shape misperception (e.g. in anorexia nervosa or obesity), these results may have implications for the development of body image therapies based on the adaptation model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.