La tuberculosis es una patología curable y prevenible, persiste como problema de salud pública a pesar de contar con medidas de diagnóstico y tratamiento eficaz. Objetivo: Brindar un acercamiento metodológico a la aplicación de redes neuronales artificiales (RNA) para la predicción del riesgo de padecimiento de tuberculosis en una población vulnerable y proponer una clasificación matemática para el nivel o tipo de riesgo. Materiales y Métodos: Emergente de Red Neuronal Artificial. Se seleccionó una muestra probabilística conformada por 370 individuos. Resultados: La interacción de factores se consideraron condicionantes para la enfermedad, cuando se interpretan en conjunto terminan todos interactuando para el riesgo de presentar la enfermedad en menor o mayor grado. Conclusión: La red neuronal artificial es una herramienta importante para llegar a predecir el riesgo de tuberculosis, la clasificación propuesta para el riesgo puede resultar al momento de considerar una población como vulnerable o no para contraer tuberculosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.