Wearable sensors are promising instruments for conducting both laboratory and ambulatory research in psychophysiology. However, scholars should be aware of their measurement error and the conditions in which accuracy is achieved. This study aimed to assess the accuracy of a wearable sensor designed for research purposes, the E4 wristband (Empatica, Milan, Italy), in measuring heart rate (HR), heart rate variability (HRV), and skin conductance (SC) over five laboratory conditions widely used in stress reactivity research (seated rest, paced breathing, orthostatic, Stroop, speech task) and two ecological conditions (slow walking, keyboard typing). Forty healthy participants concurrently wore the wristband and two gold standard measurement systems (i.e., electrocardiography and finger SC sensor). The wristband accuracy was determined by evaluating the signal quality and the correlations with and the Bland‐Altman plots against gold standard‐derived measurements. Moreover, exploratory analyses were performed to assess predictors of measurement error. Mean HR measures showed the best accuracy over all conditions. HRV measures showed satisfactory accuracy in seated rest, paced breathing, and recovery conditions but not in dynamic conditions, including speaking. Accuracy was diminished by wrist movements, cognitive and emotional stress, nonstationarity, and larger wrist circumferences. Wrist SC measures showed neither correlation nor visual resemblance with finger SC signal, suggesting that the two sites may reflect different phenomena. Future studies are needed to assess the responsivity of wrist SC to emotional and cognitive stress. Limitations and implications for laboratory and ambulatory research are discussed.
The general aim of the present study was to explore the relations between driving style (assessed through a moped riding simulator) and psychological variables such as sensation seeking and decision making. Because the influences of sensation seeking and decision making on driving styles have been studied separately in the literature, we have tried to investigate their mutual relations so as to include them in a more integrated framework. Participants rode the Honda Riding Trainer (HRT) simulator, filled in the Sensation Seeking Scale V (SSS V), and performed the Iowa Gambling Task (IGT). A cluster analysis of the HRT riding indexes identified three groups: Prudent, Imprudent, and Insecure riders. First, the results showed that Insecure males seek thrills and adventure less than both Prudent males and Insecure females, whereas Prudent females are less disinhibited than both Prudent males and Insecure females. Moreover, concerning the relations among SSS, decision making as measured by the IGT, and riding performance, high thrill and adventure seekers performed worse in the simulator only if they were also bad decision makers, indicating that these two traits jointly contribute to the quality of riding performance. From an applied perspective, these results also provide useful information for the development of protocols for assessing driving abilities among novice road users. Indeed, the relation between risk proneness and riding style may allow for the identification of road-user populations who require specific training.
Hazard perception is considered one of the most important abilities in road safety. Several efforts have been devoted to investigating how it improves with experience and can be trained. Recently, research has focused on the implicit aspects of hazard detection, reaction, and anticipation. In the present study, we attempted to understand how the ability to anticipate hazards develops during training with a moped-riding simulator: the Honda Riding Trainer (HRT). Several studies have already validated the HRT as a tool to enhance adolescents’ hazard perception and riding abilities. In the present study, as an index of hazard anticipation, we used skin conductance response (SCR), which has been demonstrated to be linked to affective/implicit appraisal of risk. We administered to a group of inexperienced road users five road courses two times a week apart. In each course, participants had to deal with eight hazard scenes (except one course that included only seven hazard scenes). Participants had to ride along the HRT courses, facing the potentially hazardous situations, following traffic rules, and trying to avoid accidents. During the task, we measured SCR and monitored driving performance. The main results show that learning to ride the simulator leads to both a reduction in the number of accidents and anticipation of the somatic response related to hazard detection, as proven by the reduction of SCR onset recorded in the second session. The finding that the SCR signaling the impending hazard appears earlier when the already encountered hazard situations are faced anew suggests that training with the simulator acts on the somatic activation associated with the experience of risky situations, improving its effectiveness in detecting hazards in advance so as to avoid accidents. This represents the starting point for future investigations into the process of generalization of learning acquired in new virtual situations and in real-road situations.
Driving under the influence (DUI) of alcohol recidivism may be a risk-taking behavior motivated by a change in decision-making capacity. Decision-making capacity has been investigated by event-related potentials (ERPs) acquisition and specifically by analyzing feedback-related negativity (FRN) reflecting the activity of medial prefrontal cortex. Thus, the aim of our study was to test the role of FRN as a possible neurophysiological marker of underestimation of risk associated with DUI recidivism to provide novel insights into the influence of neurocognitive aspects of driving ability. Methods The research was structured as a case-control study. The total cohort (30 Italian male subjects) was divided into two groups, according to positive or negative history of DUI recidivism. The protocol included informed consent collection, medical history and clinical examination, ERP registration, and sensation-seeking scale administration. ERPs were acquired during a gambling task. The data were analyzed with two ANOVA repeated-measures. Statistical analyses were conducted using the R Development Core Team to test the participants' risk behavior. A multivariate ANOVA was run to compare the personality traits of the groups. ANOVAs and planned comparisons were performed with StatSoft software. Results FRN amplitude analyses showed that the interaction Reward Magnitude ×Valence (large vs. small×gains vs. losses) was significant for Recidivists (F(1,13) = 11.75, p < 0.01) but not for controls (F(1,14) = 0.04, p = 0.84). The results of the logistic generalized linear models analysis showed that the two groups differed in risk-taking behavior (z=-3.65; p<0.001) with an average of 70 risky choices for recidivists) and 63 for controls. Both groups were homogeneous for personality traits. Conclusions The FRN and gambling task results suggest that DUI recidivists are characterized by a research of gross gains and appeared unable to recognize small losses read as wins. These results, if confirmed in a larger sample, could indicate the usefulness of ERP analysis in clinical and forensic evaluation of DUI subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.