This study evaluated main canal and intratubular decontamination using different irrigation solutions followed by adjunctive agitation steps for infected root canals. Sixty-eight lower incisors were contaminated with Enterococcus faecalis and allocated to groups according to canal treatment (n = 10): G1, NaOCl followed by ethylenediaminetetraacetic acid (EDTA); G2, a mixture of NaOCl with hydroxyethylidene bisphosphonate (HEBP); and G3, NaOCl followed by EDTA-T (EDTA with sodium lauryl ether sulfate). All three groups of teeth were agitated with passive ultrasonic irrigation (PUI) using saline solution, whereby G4, G5, and G6 were prepared as above, and agitation was performed using an XP-Endo Finisher instrument. Microbiological samples were collected from the root canals with paper points at three times: before and after chemomechanical preparation and after agitation. The colony-forming units (CFU)/mL count was determined, and bacterial intratubular viability was analyzed via confocal laser scanning microscopy using Live/Dead staining. Statistical analysis was performed using a Kruskal-Wallis test followed by Dunn tests. A Friedman test was applied for colony-counting data (α = 0.05). CFU/mL counting indicated equally effective decontamination in the experimental groups (p > 0.05). According to microscopy images, the use of irrigation solutions followed by agitation with the XP-Endo Finisher yielded better results. Moreover, NaOCl+EDTA-T followed by XP-Endo Finisher resulted in significantly lower viability than in the PUI-activated groups (p < 0.05). The cervical and medium thirds of the specimens presented similar results. Overall, NaOCl+EDTA-T exhibited the best intratubular antibacterial activity, mainly for canals that were subsequently agitated using XP-Endo Finisher.
To investigate the dispersion and contamination of aerosols generated during coronal access performed by high-speed handpiece and ultrasonic device. To measure the aerosol dispersion, a red dye or an Enterococcus faecalis culture broth inside the bottle of the water system of the dental and ultrasonic unit were used. Bovine extracted teeth were allocated in six groups according to the coronal access: G1: diamond bur in high-speed handpiece (HS) with aspiration (A); G2: ultrasonic (US) inserts with aspiration; G3: combined coronal access with HS and US with aspiration; and G4, G5, and G6 were performed without aspiration (WA). The distance reached by the aerosol with the dye was measured in centimeters, and for environment contamination, agar-plates were arranged at standardized distances for counting colony-forming units (CFU/mL). The ANOVA followed by the Tukey tests were applied (α = 0.05). The coronal access with HS generated higher aerosol dispersion and contamination, even with simultaneous A (P < 0.05), while US generated less aerosol even WA (P < 0.05). The aspiration did not reduce the aerosol statistically. HS is a great source of aerosols in dental clinic during the coronal access and the use of US device should be encouraged.
The aim of this study was to evaluate the influence of surface topography of gutta-percha (GP) cones and plasticized disks of GP on the initial adhesion of Enterococcus faecalis (E. faecalis). The GP cones (Tanari and Dentsply brands) were cut 3 mm from the apical portion and fixed on a glass slide. To make the disks, the cones were thermoplasticized in standardized molds. The specimens were divided into groups according to the shape of the GP and the presence or absence of the bacteria. For contamination, the strain of E. faecalis (ATCC 29212) was used. The surface topography was analyzed using an atomic force microscope (AFM). The surface, roughness, and waviness parameters were evaluated by the Kruskal–Wallis and Dunn test. The comparison between disks and cones showed significant differences, where the cones were rougher, with a higher value attributed to the Dentsply cone (DC group). The same was observed for the waviness. After contamination, there was greater bacterial accumulation in cones, especially in their valleys, but both the surface and the topography became more homogeneous and smoother, with no differences between disks and cones of both brands. The topographic surface of the GP, at the micro and nanoscale, influences the initial adhesion of E. faecalis, with a greater tendency for contamination in regions associated with the presence of roughness and waviness. In this context, plasticization of GP is indicated, as it reduces surface irregularities compared to cones, contributing to less retention of bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.