Mycobacterium tuberculosis is a major pathogen that has the ability to establish, and emerge from, a persistent state. Wbl family proteins are associated with developmental processes in actinomycetes, and M. tuberculosis has seven such proteins. In the present study it is shown that the M. tuberculosis H37Rv whiB1 gene is essential. The WhiB1 protein possesses a [4Fe-4S]2+ cluster that is stable in air but reacts rapidly with eight equivalents of nitric oxide to yield two dinuclear dinitrosyl-iron thiol complexes. The [4Fe-4S] form of WhiB1 did not bind whiB1 promoter DNA, but the reduced and oxidized apo-WhiB1, and nitric oxide-treated holo-WhiB1 did bind to DNA. Mycobacterium smegmatis RNA polymerase induced transcription of whiB1 in vitro; however, in the presence of apo-WhiB1, transcription was severely inhibited, irrespective of the presence or absence of the CRP (cAMP receptor protein) Rv3676, which is known to activate whiB1 expression. Footprinting suggested that autorepression of whiB1 is achieved by apo-WhiB1 binding at a region that overlaps the core promoter elements. A model incorporating regulation of whiB1 expression in response to nitric oxide and cAMP is discussed with implications for sensing two important signals in establishing M. tuberculosis infections.
We demonstrate a role for PI3-K, p42/44 MAPK and p38 MAPK in the stimulation of CTB cell motility by EGF, however activation of beta-catenin alone was insufficient to stimulate cell motility.
In Mycobacterium tuberculosis, the genes Rv1954A–Rv1957 form an operon that includes Rv1955 and Rv1956 which encode the HigB toxin and the HigA antitoxin respectively. We are interested in the role and regulation of this operon, since toxin–antitoxin systems have been suggested to play a part in the formation of persister cells in mycobacteria. To investigate the function of the higBA locus, effects of toxin expression on mycobacterial growth and transcript levels were assessed in M. tuberculosis H37Rv wild type and in an operon deletion background. We show that expression of HigB toxin in the absence of HigA antitoxin arrests growth and causes cell death in M. tuberculosis. We demonstrate HigB expression to reduce the abundance of IdeR and Zur regulated mRNAs and to cleave tmRNA in M. tuberculosis, Escherichia coli and Mycobacterium smegmatis. This study provides the first identification of possible target transcripts of HigB in M. tuberculosis.
Diversion strategies aim to redirect drug-involved offenders away from the criminal justice system and into treatment. Despite the interest in diversionary practices, the emergence of an empirical evaluation literature has been slow. A methodological review of published outcome studies was conducted to investigate the current strength of evidence for the efficacy of diversion and aftercare practices for criminal offenders. Twenty outcome studies were identified for review: 19 on diversion and one on aftercare. The vast majority of studies were non-randomised evaluations, reflecting the paucity of rigorous evaluation work in this area. Although most studies were prospective, very few reported on long-term outcomes following treatment. Detail was lacking with regard to basic study characteristics, such as eligibility criteria and outcomes. Despite these methodological shortcomings, results provide some tentative evidence that diversion and aftercare programmes could be effective. Best practice elements of diversion and aftercare programmes are identified and feasible strategies to improve the methodological quality of future evaluations are considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.