SummaryWhen processing dynamic input, the brain balances the opposing needs of temporal integration and sensitivity to change. We hypothesized that the visual system might resolve this challenge by aligning integration windows to the onset of newly arriving sensory samples. In a series of experiments, human participants observed the same sequence of two displays separated by a brief blank delay when performing either an integration or segregation task. First, using magneto-encephalography (MEG), we found a shift in the stimulus-evoked time courses by a 150-ms time window between task signals. After stimulus onset, multivariate pattern analysis (MVPA) decoding of task in occipital-parietal sources remained above chance for almost 1 s, and the task-decoding pattern interacted with task outcome. In the pre-stimulus period, the oscillatory phase in the theta frequency band was informative about both task processing and behavioral outcome for each task separately, suggesting that the post-stimulus effects were caused by a theta-band phase shift. Second, when aligning stimulus presentation to the onset of eye fixations, there was a similar phase shift in behavioral performance according to task demands. In both MEG and behavioral measures, task processing was optimal first for segregation and then integration, with opposite phase in the theta frequency range (3–5 Hz). The best fit to neurophysiological and behavioral data was given by a dampened 3-Hz oscillation from stimulus or eye fixation onset. The alignment of temporal integration windows to input changes found here may serve to actively organize the temporal processing of continuous sensory input.
Numerous technological solutions have been proposed to promote piano learning and teaching, but very few with market success. We are convinced that users’ needs should be the starting point for an effective and transdisciplinary development process of piano-related Tactile Internet with Human-in-the-Loop (TaHIL) applications. Thus, we propose to include end users in the initial stage of technology development. We gathered insights from adult piano teachers and students through an online survey and digital interviews. Three potential literature-based solutions have been visualized as scenarios to inspire participants throughout the interviews. Our main findings indicate that potential end users consider posture and body movements, teacher–student communication, and self-practice as crucial aspects of piano education. Further insights resulted in so-called acceptance requirements for each scenario, such as enabling meaningful communication in distance teaching, providing advanced data on a performer’s body movement for increased well-being, and improving students’ motivation for self-practice, all while allowing or even promoting artistic freedom of expression and having an assisting instead of judging character. By putting the users in the center of the fuzzy front end of technology development, we have gone a step further toward concretizing TaHIL applications that may contribute to the routines of piano teaching and learning.
Although sensory input is continuous, information must be combined over time to guide action and cognition, leading to the proposal of temporal sampling windows. A number of studies have suggested that a 10-Hz sampling window might be involved in the “frame rate” of visual processing. To investigate this, we tested the ability of participants to localize and enumerate 1 or 2 visual flashes presented either at near-threshold or full-contrast intensities, while recording magnetoencephalography. The inter-stimulus interval (ISI) between the 2 flashes was varied across trials. Performance in distinguishing between 1 and 2 flashes was linked to the alpha frequency, both at the individual level and trial-by-trial. Participants with a higher resting-state alpha peak frequency showed the greatest improvement in performance as a function of ISI within a 100-ms time window, while those with slower alpha improved more when ISI exceeded 100 ms. On each trial, correct enumeration (1 vs. 2) performance was paired with faster pre-stimulus instantaneous alpha frequency. Our results suggest that visual sampling/processing speed, linked to peak alpha frequency, is both an individual trait and can vary in a state-dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.