A new alkaloid paenidigyamycin A (1) was obtained from the novel Ghanaian Paenibacillus sp. isolated from the mangrove rhizosphere soils of the Pterocarpus santalinoides tree growing in the wetlands of the Digya National Park, Ghana. Compound 1 was isolated on HPLC at tR = 37.0 min and its structure determined by MS, 1D, and 2D-NMR data. When tested against L. major, 1 (IC50 0.75 µM) was just as effective as amphotericin B (IC50 0.31 µM). Against L. donovani, 1 (IC50 7.02 µM) was twenty-two times less active than amphotericin B (IC50 0.32 µM), reinforcing the unique effectiveness of 1 against L. major. For T. brucei brucei, 1 (IC50 0.78 µM) was ten times more active than the laboratory standard Coptis japonica (IC50 8.20 µM). The IC50 of 9.08 µM for 1 against P. falciparum 3d7 compared to artesunate (IC50 36 nM) was not strong, but this result suggests the possibility of using the paenidigyamycin scaffold for the development of potent antimalarial drugs. Against cercariae, 1 showed high anticercaricidal activity compared to artesunate. The minimal lethal concentration (MLC) and minimal effective concentration (MEC) of the compound were 25 and 6.25 µM, respectively, while artesunate was needed in higher quantities to produce such results. However, 1 (IC50 > 100 µM) was not active against T. mobilensis.
The plant Zanthoxylum zanthoxyloides (Lam.) Zepern. & Timler is one of the most important medicinal species of the genus Zanthoxylum on the African continent. It is used in the treatment and management of parasitic diseases in sub-Saharan Africa. These properties have inspired scientists to investigate species within the genus for bioactive compounds. However, a study, which details a spectroscopic, spectrometric and bioactivity guided extraction and isolation of antiparasitic compounds from the genus Zanthoxylum is currently non-existent. Tortozanthoxylamide (1), which is a derivative of the known compound armatamide was isolated from Z. zanthoxyloides and the full structure determined using UV, IR, 1D/2D-NMR and high-resolution liquid chromatography tandem mass spectrometry (HRESI-LC-MS) data. When tested against Trypanosoma brucei subsp. brucei, the parasite responsible for animal African trypanosomiasis in sub-Saharan Africa, 1 (IC50 7.78 µM) was just four times less active than the commercially available drug diminazene aceturate (IC50 1.88 µM). Diminazene aceturate is a potent drug for the treatment of animal African trypanosomiasis. Tortozanthoxylamide (1) exhibits a significant antitrypanosomal activity through remarkable alteration of the cell cycle in T. brucei subsp. brucei, but it is selectively non-toxic to mouse macrophages RAW 264.7 cell lines. This suggests that 1 may be considered as a scaffold for the further development of natural antitrypanosomal compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.