Veterinary diagnostic laboratories identify and characterize influenza A viruses primarily through passive surveillance. However, additional surveillance programs are needed. To meet this need, an active surveillance program was conducted at pig farms throughout the midwestern United States. From June 2009 through December 2011, nasal swab samples were collected monthly from among 540 groups of growing pigs and tested for influenza A virus by real-time reverse transcription PCR. Of 16,170 samples, 746 were positive for influenza A virus; of these, 18.0% were subtype H1N1, 16.0% H1N2, 7.6% H3N2, and 14.5% (H1N1)pdm09. An influenza (H3N2) and (H1N1)pdm09 virus were identified simultaneously in 8 groups. This active influenza A virus surveillance program provided quality data and increased the understanding of the current situation of circulating viruses in the midwestern US pig population.
Early epidemiologic and serologic studies have suggested preexisting immunity to the pandemic A (H1N1) 2009 influenza virus (H1N1pdm) may be altering its morbidity and mortality in humans. To determine the role that contemporary seasonal H1N1 virus infection or trivalent inactivated vaccine (TIV) might be playing in this immunity we conducted a vaccination-challenge study in ferrets. Vaccination with TIV was unable to alter subsequent morbidity or contact transmission in ferrets following challenge with H1N1pdm. Conversely, prior infection with the contemporary seasonal H1N1 strain altered morbidity, but not transmission, of H1N1pdm despite the detection of only minimal levels of cross reactive antibodies.
Since the reemergence of highly pathogenic H5N1 influenza viruses in humans in 2003, these viruses have spread throughout avian species in Asia, Europe, and Africa. Their sustained circulation has resulted in the evolution of phylogenetically diverse lineages. Viruses from these lineages show considerable antigenic variation, which has confounded vaccine planning efforts. We reconstructed ancestral protein sequences at several nodes of the hemagglutinin (HA) and neuraminidase (NA) gene phylogenies that represent ancestors to diverse H5N1 virus clades. By using the same methods that have been used to generate currently licensed inactivated H5N1 vaccines, we were able to produce a panel of replication competent influenza viruses containing synthesized HA and NA genes representing the reconstructed ancestral proteins. We identified two of these viruses that showed promising in vitro cross-reactivity with clade 1, 2.1, 2.2, 2.3.4, and 4 viruses. To confirm that vaccine antigens derived from these viruses were able to elicit functional antibodies following immunization, we created whole-virus vaccines and compared their protective efficacy versus that of antigens from positive control, naturally occurring, and broadly reactive H5N1 viruses. The ancestral viruses’ vaccines provided robust protection against morbidity and mortality in ferrets challenged with H5N1 strains from clades 1, 2.1, and 2.2 in a manner similar to those based on the control strains. These findings provide proof of principle that viable, computationally derived vaccine seed viruses can be constructed within the context of currently licensed vaccine platforms. Such technologies should be explored to enhance the cross reactivity and availability of H5N1 influenza vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.