Summary
Bacillus anthracis
, the aetiological agent of anthrax, is a Gram‐positive spore‐forming bacterium. The exosporium is the outermost integument surrounding the mature spore. Here, we describe the purification and the characterization of an immunodominant protein of the spore surface. This protein was abundant, glycosylated and part of the exosporium. The amino‐terminal sequence was determined and the corresponding gene was identified. It encodes a protein of 382 amino acid residues, the central part of which contains a region of GXX motifs presenting similarity to mammalian collagen proteins. Thus, this collagen‐like surface protein was named BclA (for
Bacillus
c
ollagen‐
l
ike protein of
anthracis
). BclA was absent from vegetative cells; it was detected only in spores and sporulating cells. A potential promoter, dependent on the sigma factor
σ
K
, which is required for a variety of events late in sporulation, was found upstream from the
bclA
gene. A
bclA deletion mutant was constructed and analysed. Electron microscopy studies showed that BclA is a structural component of the filaments covering the outer layer of the exosporium.
Endosporulation is an ancient bacterial developmental program that culminates with the differentiation of a highly resistant endospore. In the model organism Bacillus subtilis, gene expression in the forespore and in the mother cell, the two cells that participate in endospore development, is governed by cell type-specific RNA polymerase sigma subunits. σF in the forespore, and σE in the mother cell control early stages of development and are replaced, at later stages, by σG and σK, respectively. Starting with σF, the activation of the sigma factors is sequential, requires the preceding factor, and involves cell-cell signaling pathways that operate at key morphological stages. Here, we have studied the function and regulation of the sporulation sigma factors in the intestinal pathogen Clostridium difficile, an obligate anaerobe in which the endospores are central to the infectious cycle. The morphological characterization of mutants for the sporulation sigma factors, in parallel with use of a fluorescence reporter for single cell analysis of gene expression, unraveled important deviations from the B. subtilis paradigm. While the main periods of activity of the sigma factors are conserved, we show that the activity of σE is partially independent of σF, that σG activity is not dependent on σE, and that the activity of σK does not require σG. We also show that σK is not strictly required for heat resistant spore formation. In all, our results indicate reduced temporal segregation between the activities of the early and late sigma factors, and reduced requirement for the σF-to-σE, σE-to-σG, and σG-to-σK cell-cell signaling pathways. Nevertheless, our results support the view that the top level of the endosporulation network is conserved in evolution, with the sigma factors acting as the key regulators of the pathway, established some 2.5 billion years ago upon its emergence at the base of the Firmicutes Phylum.
Spores of Bacillus anthracis, the etiological agent of anthrax, and the closely related species Bacillus cereus and Bacillus thuringiensis, possess an exosporium, which is the outermost structure surrounding the mature spore. It consists of a paracrystalline basal layer and a hair-like outer layer. To date, the structural contribution of only one exosporium component, the collagen-like glycoprotein BclA, has been described. It is the structural component of the hair-like filaments. Here, we describe two other proteins, ExsFA and ExsFB, which are probably organized in multimeric complexes with other exosporium components, including BclA. Single and double exsF deletion mutants were constructed and analyzed. We found that inactivation of exsF genes affects the BclA content of spores. BclA is produced by all mutants. However, it is partially and totally released after mother cell lysis of the ⌬exsFA and ⌬exsFA ⌬exsFB mutant strains, respectively. Electron microscopy revealed that the exsF mutant spores have defective exosporia. The ⌬exsFA and ⌬exsFA ⌬exsFB spore surfaces are partially and totally devoid of filaments, respectively. Moreover, for all mutants, the crystalline basal layer appeared unstable. This instability revealed the presence of two distinct crystalline arrays that are sloughed off from the spore surface. These results indicate that ExsF proteins are required for the proper localization of BclA on the spore surface and for the stability of the exosporium crystalline layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.