The mechanisms underlying the immunomodulatory functions of mesenchymal stem cells (MSC) on dendritic cells (DC) have been shown to involve soluble factors, such as IL-6 or TGF-β, or cell-cell contact, or both depending on the report referenced. In this study, we intend to clarify these mechanisms by examining the immunosuppressive effect of human adult MSC on adult DC differentiated from CD34+ hemopoietic progenitor cells (HPC). MSC have been shown to inhibit interstitial DC differentiation from monocytes and umbilical CD34+ HPC. In this study, we confirm that MSC not only halt interstitial DC but also Langerhans cell differentiation from adult CD34+ HPC, as assessed by the decreased expression of CD1a, CD14, CD86, CD80, and CD83 Ags on their cell surface. Accordingly, the functional capacity of CD34+ HPC-derived DC (CD34-DC) to stimulate alloreactive T cells was impaired. Furthermore, we showed that 1) MSC inhibited commitment of CD34+ HPC into immature DC, but not maturation of CD34-DC, 2) this inhibitory effect was reversible, and 3) DC generated in coculture with MSC (MSC-DC) induced the generation of alloantigen-specific regulatory T cells following secondary allostimulation. Conditioned medium from MSC cultures showed some inhibitory effect independent of IL-6, M-CSF, and TGF-β. In comparison, direct coculture of MSC with CD34+ HPC resulted in much stronger immunosuppressive effect and led to an activation of the Notch pathway as assessed by the overexpression of Hes1 in MSC-DC. Finally, DAPT, a γ-secretase inhibitor that inhibits Notch signaling, was able to overcome MSC-DC defects. In conclusion, our data suggest that MSC license adult CD34+ HPC to differentiate into regulatory DC through activation of the Notch pathway.
Key Points• The RNA regulators PUMILIO sustain HSPC and acute myeloid leukemia cell growth by upregulating FOXP1 expression through direct binding to 2 FOXP1-39UTR PUMILIO-binding elements.• FOXP1 mediates PUMILIO growth-promoting activities by repressing expression of p21 CIP1 and p27 KIP1 cell cycle inhibitors.RNA-binding proteins (RBPs) have emerged as important regulators of invertebrate adult stem cells, but their activities remain poorly appreciated in mammals. Using a short hairpin RNA strategy, we demonstrate here that the 2 mammalian RBPs, PUMILIO (PUM)1 and PUM2, members of the PUF family of posttranscriptional regulators, are essential for hematopoietic stem/progenitor cell (HSPC) proliferation and survival in vitro and in vivo upon reconstitution assays. Moreover, we found that PUM1/2 sustain myeloid leukemic cell growth. Through a proteomic approach, we identified the FOXP1 transcription factor as a new target of PUM1/2. Contrary to its canonical repressive activity, PUM1/2 rather promote FOXP1 expression by a direct binding to 2 canonical PUM responsive elements present in the FOXP1-39 untranslated region (UTR). Expression of FOXP1 strongly correlates with PUM1 and PUM2 levels in primary HSPCs and myeloid leukemia cells. We demonstrate that FOXP1 by itself supports HSPC and leukemic cell growth, thus mimicking PUM activities. Mechanistically, FOXP1 represses the expression of the p212CIP1 and p27 2KIP1 cell cycle inhibitors. Enforced FOXP1 expression reverses shPUM antiproliferative and proapoptotic activities. Altogether, our results reveal a novel regulatory pathway, underscoring a previously unknown and interconnected key role of PUM1/2 and FOXP1 in regulating normal HSPC and leukemic cell growth. (Blood. 2017;129(18):2493-2506
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.