Microbial biotransformations have a major impact on contamination by toxic elements, which threatens public health in developing and industrial countries. Finding a means of preserving natural environments—including ground and surface waters—from arsenic constitutes a major challenge facing modern society. Although this metalloid is ubiquitous on Earth, thus far no bacterium thriving in arsenic-contaminated environments has been fully characterized. In-depth exploration of the genome of the β-proteobacterium Herminiimonas arsenicoxydans with regard to physiology, genetics, and proteomics, revealed that it possesses heretofore unsuspected mechanisms for coping with arsenic. Aside from multiple biochemical processes such as arsenic oxidation, reduction, and efflux, H. arsenicoxydans also exhibits positive chemotaxis and motility towards arsenic and metalloid scavenging by exopolysaccharides. These observations demonstrate the existence of a novel strategy to efficiently colonize arsenic-rich environments, which extends beyond oxidoreduction reactions. Such a microbial mechanism of detoxification, which is possibly exploitable for bioremediation applications of contaminated sites, may have played a crucial role in the occupation of ancient ecological niches on earth.
SummaryThe structural gene of the H-NS protein, a global regulator of bacterial metabolism, has been identified in the group of enterobacteria as well as in closely related bacteria, such as Erwinia chrysanthemi and Haemophilus influenzae. Isolated outside these groups, the BpH3 protein of Bordetella pertussis exhibits a low amino acid conservation with H-NS, particularly in the N-terminal domain. To obtain information on the structure, function and/or evolution of H-NS, we searched for other H-NS-related proteins in the latest databases. We found that HvrA, a trans-activator protein in Rhodobacter capsulatus, has a low but significant similarity with H-NS and H-NS-like proteins. This Gram-negative bacterium is phylogenetically distant from Escherichia coli. Using theoretical analysis (e.g. secondary structure prediction and DNA binding domain modelling) of the amino acid sequence of H-NS, StpA (an H-NS-like protein in E. coli ), BpH3 and HvrA and by in vivo and in vitro experiments (e.g. complementation of various H-NS-related phenotypes and competitive gel shift assay), we present evidence that these proteins belong to the same class of DNA binding proteins. In silico analysis suggests that this family also includes SPB in R. sphaeroides, XrvA in Xanthomonas oryzae and VicH in Vibrio cholerae. These results demonstrate that proteins structurally and functionally related to H-NS are widespread in Gram-negative bacteria.
Aerobic gram-negative methylotrophs oxidize methanol to formaldehyde by using a methanol dehydrogenase that has pyrroloquinoline quinone (PQQ) as a prosthetic group. Seventy-two mutants which are unable to grow on methanol unless the growth medium is supplemented with PQQ have been isolated in the facultative methanol utilizer Methylobacterium extorquens AM1. In addition, 12 previously isolated methanol oxidation mutants of M. extorquens AM1 were shown to be able to grow on methanol in the presence of PQQ. These putative PQQ biosynthesis mutants have been complemented by using previously isolated clones containing M. extorquens AM1 DNA, which were known to contain genes necessary for oxidation of methanol to formaldehyde (mox genes (27). MDH is a tetrameric enzyme located in the periplasm that contains pyrroloquinoline quinone (PQQ) as the prosthetic group and also contains Ca2+ (37,40). PQQ was first identified as the prosthetic group of MDH and is now also known to be the prosthetic group of a few other bacterial dehydrogenases that oxidize alcohols or sugars (9). The biosynthetic pathway of PQQ has not yet been determined, but the biosynthetic precursors are known to be tyrosine and glutamate (19).
Photorhabdus luminescens is a symbiont of entomopathogenic nematodes. Analysis of the genome sequence of this organism revealed a homologue of PhoP-PhoQ, a two-component system associated with virulence in intracellular bacterial pathogens. This organism was shown to respond to the availability of environmental magnesium. A mutant with a knockout mutation in the regulatory component of this system (phoP) had no obvious growth defect. It was, however, more motile and more sensitive to antimicrobial peptides than its wild-type parent. Remarkably, the mutation eliminated virulence in an insect model. No insect mortality was observed after injection of a large number of the phoP bacteria, while very small amounts of parental cells killed insect larvae in less than 48 h. At the molecular level, the PhoPQ system mediated Mg 2؉ -dependent modifications in lipopolysaccharides and controlled a locus (pbgPE) required for incorporation of 4-aminoarabinose into lipid A. Mg 2؉ -regulated gene expression of pbgP1 was absent in the mutant and was restored when phoPQ was complemented in trans. This finding highlights the essential role played by PhoPQ in the virulence of an entomopathogen.
Heat-shock protein 90 (Hsp 90) has been implicated in both protection against oxidative inactivation and inhibition of the multicatalytic proteinase (MCP, also known as 20 S proteasome). We report here that the protective and inhibitory effects of Hsp 90 depend on the activation state of the proteasome. Hsp 90 (and also alpha-crystallin) inhibits the N-Cbz-Leu-Leu-Leu-MCA-hydrolysing activity (Cbz=benzyloxycarbonyl; MCA=7-amido-4-methylcoumarin) when the rat liver MCP is in its latent form, but no inhibitory effects are observed when the MCP is in its active form. Metal-catalysed oxidation of the active MCP inactivates the Ala-Ala-Phe-MCA-hydrolysing (chymotrypsin-like), N-Boc-Leu-Ser-Thr-Arg-MCA-hydrolysing (trypsin-like; Boc=t-butyloxycarbonyl), N-Cbz-Leu-Leu-Glu-beta-naphthylamine-hydrolysing (peptidylglutamyl-peptide hydrolase) and N-Cbz-Leu-Leu-Leu-MCA-hydrolysing activities, whereas these activities are actually increased when the MCP is in its latent form. Hsp 90 protects against oxidative inactivation of the trypsin-like and N-Cbz-Leu-Leu-Leu-MCA-hydrolysing activities of the MCP active form, and alpha-crystallin protects the trypsin-like activity. The specificity of the Hsp 90-mediated protection was assessed by a quantitative analysis of the two-dimensional electrophoretic pattern of MCP subunits before and after oxidation of the MCP, in the presence or absence of Hsp 90. Treatment of the FAO hepatoma cell line with iron and ascorbate was found to inactivate the MCP. Hsp 90 overexpression obtained by challenging the cells with iron was associated with a decreased susceptibility to oxidative inactivation of the MCP trypsin-like activity. Depletion of Hsp 90 by using antisense oligonucleotides resulted in an increased susceptibility to oxidative inactivation of the MCP trypsin-like activity, providing evidence for the physiological relevance of Hsp 90-mediated protection of the MCP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.