Understanding of molecular mechanisms of tumor growth has an increasing impact on the development of diagnostics and targeted therapy of human neoplasia. In this review, we summarize the current knowledge on molecular mechanisms and their clinical implications in von Hippel-Lindau (VHL) disease. This autosomal dominant tumor syndrome usually manifests in young adulthood and predisposes affected patients to the development of benign and malignant tumors of different organ systems mainly including the nervous system and internal organs. A consequent screening and timely preventive treatment of lesions are crucial for patients affected by VHL disease. Surgical indications and treatment have been evaluated and optimized over many years. In the last decade, pharmacological therapies have been evolving, but are largely still at an experimental stage. Effective pharmacological therapy as well as detection of biomarkers is based on the understanding of the molecular basis of disease. The molecular basis of von Hippel-Lindau disease is the loss of function of the VHL protein and subsequent accumulation of hypoxia-inducible factor with downstream effects on cellular metabolism and differentiation. Organs affected by VHL disease may develop frank tumors. More characteristically, however, they reveal multiple separate microscopic foci of neoplastic cell proliferation. The exact mechanisms of tumorigenesis in VHL disease are, however, still not entirely understood and knowledge on biomarkers and targeted therapy is scarce.
BackgroundPatients with hereditary tumor syndromes undergo periodical magnetic resonance imaging (MRI) screening with Gadolinium contrast. Gadolinium accumulation has recently been described in the central nervous system after repeated administrations. The prevalence and rate of accumulation in different subgroups of patients are unknown. Neither are the mechanism nor clinical impact. This may cause uncertainty about the screening. To explore the prevalence and rate of Gadolinium accumulation in different subgroups, we retrospectively analyzed MRIs of patients with von Hippel-Lindau disease (VHL) and Tuberous Sclerosis Complex (TSC).MethodsWe determined the prevalence and rate of accumulation in the dentate nucleus and globus pallidus on unenhanced T1-weighted MRI from VHL and TSC patients. We compared the signal intensities of these regions to the signal intensity of the pons. We evaluated the impact of number of MRIs, kidney function and liver function on Gadolinium accumulation.ResultsTwenty eight VHL patients and 24 TSC patients were included. The prevalence of accumulation in the dentate nucleus and globus pallidus increased linearly according to number of Gadolinium enhanced MRIs and was higher in the VHL group (100%). A significant linear correlation between number of MRIs and increased signal intensity was observed in the VHL group.ConclusionsGadolinium accumulation occurs in almost all patients undergoing contrast MRI screening after >5 MRIs. We advocate a screening protocol for patients with hereditary tumor syndromes that minimizes the Gadolinium dose. This can be accomplished by using a single administration to simultaneously screen for brain, spine and/or abdominal lesions, using an MRI protocol focused on either VHL- or TSC-specific lesions. Higher prevalence and rate of accumulation in VHL patients may be explained by the typical vascular leakage accompanying central nervous system hemangioblastomas.
Background Von Hippel-Lindau (VHL) disease is an autosomal dominantly inherited tumor syndrome. Affected patients develop central nervous system hemangioblastomas and abdominal tumors, among other lesions. Patients undergo an annual clinical screening program including separate magnetic resonance imaging (MRI) of the brain, whole spine and abdomen. Consequently, patients are repeatedly subjected to time-consuming and expensive MRI scans, performed with cumulative Gadolinium injections. We report our experience with a 35-min whole body MRI screening protocol, specifically designed for detection of VHL-associated lesions. Methods We designed an MRI protocol dedicated to the typical characteristics of VHL-associated lesions in different imaging sequences, within the time frame of 35 min. Blank imaging of the abdomen is carried out first, followed by abdominal sequences with Gadolinium contrast. Next, the full spine is examined, followed by imaging of the brain. A single dose of contrast used for abdominal imaging is sufficient for further highlighting of spine- and brain lesions, thus limiting the Gadolinium dosage. We used 1.5 Tesla equipment, dealing with fewer artifacts compared to a 3 Tesla system for spine- and abdominal imaging, while preserving acceptable quality for central nervous system images. In addition, imaging on a 1.5 Tesla scanner is slightly faster. Results From January 2016 to November 2018, we performed 38 whole body screening MRIs in 18 VHL patients; looking for the most common types of VHL lesions in the abdomen, spine, and brain, both for new lesions and follow-up. The one-step approach MRI examinations lead to 6 surgical interventions for clinically significant or symptomatic hemangioblastomas in the brain and spine. One renal cell carcinoma was treated with radiofrequency ablation. In comparison with previous conventional MRI scans of the same patients, all lesions were visible with the focused protocol. Conclusions Annual screening in VHL disease can be done in a rapid, safe and sensitive way by using a dedicated whole body MRI protocol; saving MRI examination time and limiting Gadolinium dose.
Von Hippel-Lindau (VHL) disease is a hereditary tumor syndrome that targets a highly selective subset of organs causing specific types of tumors. The biological basis for this principle of organ selectivity and tumor specificity is not well understood. VHL-associated hemangioblastomas share similar molecular and morphological features with embryonic blood and vascular precursor cells. Therefore, we suggest that VHL hemangioblastomas are derived from developmentally arrested hemangioblastic lineage keeping their potential of further differentiation. Due to these common features, it is of major interest to investigate whether VHL-associated tumors other than hemangioblastoma also share these pathways and molecular features. The expression of hemangioblast proteins has not yet been assessed in other VHL-related tumors. To gain a better understanding of VHL tumorigenesis, the expression of hemangioblastic proteins in different VHL-associated tumors was investigated. The expression of embryonic hemangioblast proteins Brachyury and TAL1 (T-cell acute lymphocytic leukemia protein 1) was assessed by immunohistochemistry staining on 75 VHL-related tumors of 51 patients: 47 hemangioblastomas, 13 clear cell renal cell carcinomas, 8 pheochromocytomas, 5 pancreatic neuroendocrine tumors, and 2 extra-adrenal paragangliomas. Brachyury and TAL1 expression was, respectively, observed in 26% and 93% of cerebellar hemangioblastomas, 55% and 95% of spinal hemangioblastomas, 23% and 92% of clear cell renal cell carcinomas, 38% and 88% of pheochromocytomas, 60% and 100% of pancreatic neuroendocrine tumors, and 50% and 100% of paragangliomas. We concluded that the expression of hemangioblast proteins in different VHL-associated tumors indicates a common embryological origin of these lesions. This may also explain the specific topographic distribution of VHL-associated tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.