MotivationThe BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community‐led open‐source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene.Main types of variables includedThe database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record.Spatial location and grainBioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1,000,000,000,000 cm2).Time period and grainBioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year.Major taxa and level of measurementBioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates.Software format.csv and .SQL.
Marine protected areas (MPAs) are increasingly implemented as tools to conserve and manage fisheries and target species. Because there are opportunity costs to conservation, there is a need for science-based assessment of MPAs. Here, we present one of the northernmost documentations of MPA effects to date, demonstrated by a replicated before–after control-impact (BACI) approach. In 2006, MPAs were implemented along the Norwegian Skagerrak coast offering complete protection to shellfish and partial protection to fish. By 2010, European lobster (Homarus gammarus) catch-per-unit-effort (CPUE) had increased by 245 per cent in MPAs, whereas CPUE in control areas had increased by 87 per cent. Mean size of lobsters increased by 13 per cent in MPAs, whereas increase in control areas was negligible. Furthermore, MPA-responses and population development in control areas varied significantly among regions. This illustrates the importance of a replicated BACI design for reaching robust conclusions and management decisions. Partial protection of Atlantic cod (Gadus morhua) was followed by an increase in population density and body size compared with control areas. By 2010, MPA cod were on average 5 cm longer than in any of the control areas. MPAs can be useful management tools in rebuilding and conserving portions of depleted lobster populations in northern temperate waters, and even for a mobile temperate fish species such as the Atlantic cod.
Harvesting wild populations may contrast or reinforce natural agents of selection and potentially cause evolutionary changes in life-history traits such as growth and maturation. Harvest selection may also act on behavioral traits, although this field of research has so far received less attention. We used acoustic tags and a network of receivers to monitor the behavior and fate of individual Atlantic cod (Gadus morhua, N = 60) in their natural habitat on the Norwegian Skagerrak coast. Fish with a strong diel vertical migration, alternating between shallow- and deep-water habitats, had a higher risk of being captured in the fishery (traps, gillnet, hand line) as compared to fish that stayed in deeper water. There was also a significant negative correlation between fish size (30–66 cm) and the magnitude of diel vertical migration. Natural selection on behavior was less clear, but tended to favor fish with a large activity space. On a monthly time scale we found significant repeatabilities for cod behavior, meaning that individual characteristics tended to persist and therefore may be termed personality traits. We argue that an evolutionary approach to fisheries management should consider fish behavior. This would be of particular relevance for spatial management actions such as marine reserve design.
Genetic divergence among populations arises through natural selection or drift and is counteracted by connectivity and gene flow. In sympatric populations, isolating mechanisms are thus needed to limit the homogenizing effects of gene flow to allow for adaptation and speciation. Chromosomal inversions act as an important mechanism maintaining isolating barriers, yet their role in sympatric populations and divergence with gene flow is not entirely understood. Here, we revisit the question of whether inversions play a role in the divergence of connected populations of the marine fish Atlantic cod ( Gadus morhua ), by exploring a unique data set combining whole‐genome sequencing data and behavioural data obtained with acoustic telemetry. Within a confined fjord environment, we find three genetically differentiated Atlantic cod types belonging to the oceanic North Sea population, the western Baltic population and a local fjord‐type cod. Continuous behavioural tracking over 4 year revealed temporally stable sympatry of these types within the fjord. Despite overall weak genetic differentiation consistent with high levels of gene flow, we detected significant frequency shifts of three previously identified inversions, indicating an adaptive barrier to gene flow. In addition, behavioural data indicated that North Sea cod and individuals homozygous for the LG 12 inversion had lower fitness in the fjord environment. However, North Sea and fjord‐type cod also occupy different depths, possibly contributing to prezygotic reproductive isolation and representing a behavioural barrier to gene flow. Our results provide the first insights into a complex interplay of genomic and behavioural isolating barriers in Atlantic cod and establish a new model system towards an understanding of the role of genomic structural variants in adaptation and diversification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.