The addition of O 2 to gas mixtures in time projection chambers containing CS 2 has recently been shown to produce multiple negative ions that travel at slightly different velocities. This allows a measurement of the absolute position of ionising events in the z (drift) direction. In this work, we apply the z-fiducialisation technique to a directional dark matter search. We present results from a 46.3 live-day source-free exposure of the DRIFT-IId detector run in this new mode. With full-volume fiducialisation, we have achieved the first background-free operation of a directional detector. The resulting exclusion curve for spindependent WIMP-proton interactions reaches 1.1 pb at 100 GeV/c 2 , a factor of 2 better than our previous work. We describe the automated analysis used here, and argue that detector upgrades, implemented after the acquisition of these data, will bring an additional factor of 3 improvement in the near future.arXiv:1410.7821v3 [hep-ex] 23 Jul 2015 DRIFT-IId detector and science runsThe DRIFT experiment is sited at a depth of 1.1 km in the STFC Boulby Underground Science Facility [29], which provides 2805 m.w.e. shielding against cosmic rays. The TPC is housed inside a stainless steel cubic vacuum vessel, surrounded on all sides with 44 g cm −2 of polypropylene pellets to shield against neutrons from the cavern walls. The vessel was filled with a mixture of 30:10:1 Torr CS 2 :CF 4 :O 2 gas, and sealed for the duration of each run. This departure from the normal mode of operation, in which gas is flowed at a constant rate of one complete vacuum vessel change (590 g) /d, was necessary due to safety concerns over sources of ignition in the constant flow system. These concerns have since been addressed with modifications to the gas system.The DRIFT-IId NITPC consists of a thin-film (0.9 µm aluminised Mylar), texturised central cathode [25] at a potential of -31.9 kV faced on either side by two 1 m 2 multi-wire proportional chambers (hereafter, the 'left' and 'right' MWPCs) at a distance of 50 cm. In this way, two 50-cm-long drift regions are defined. A field cage of 31 stainless steel rings on either side steps down the voltage smoothly between the central cathode and the MWPCs to ensure a uniform electric field of 580 V cm −1 throughout the drift regions. The MWPCs are made up of a central grounded anode plane of 20 µm diameter stainless steel wires with 2 mm pitch, sandwiched between two perpendicular grid planes of 100 µm wires at -2884 V, again with 2 mm pitch and separated by 1 cm from the anode plane. A full description of the detector can be found in Ref. [30].Both the inner grid and anode planes have every eighth wire joined together and read out as one, such that a single 'octave' of wires reads out 8 × 2 = 16 mm in x and y: large enough to contain the recoil events of interest. The outermost 52 (41) wires of the 512 total on the inner grid (anode) planes are grouped together into x (y) veto regions, reducing the fiducial volume of the detector to 0.80 m 3 . The anode and grid veto signal...
We present results from a 54.7 live-day shielded run of the DRIFT-IId detector, the world's most sensitive, directional, dark matter detector. Several improvements were made relative to our previous work including a lower threshold for detection, a more robust analysis and a tenfold improvement in our gamma rejection factor. After analysis, no events remain in our fiducial region leading to an exclusion curve for spindependent WIMP-proton interactions which reaches 0.28 pb at 100 GeV/c 2 , a fourfold improvement on our previous work. We also present results from a 45.4 live-day unshielded run of the DRIFT-IId detector during which 14 nuclear recoil-like events were observed. We demonstrate that the observed nuclear recoil rate of 0.31±0.08 events per day is consistent with detection of ambient, fast neutrons emanating from the walls of the Boulby Underground Science Facility.
Given the ubiquity of lattice models in physics, it is imperative for researchers to possess robust methods for quantifying clusters on the lattice -whether they be Ising spins or clumps of molecules. Inspired by biophysical studies, we present Python code for handling clusters on a 2D periodic lattice. Properties of individual clusters, such as their area, can be obtained with a few function calls. Our code invokes an unsupervised machine learning method called hierarchical clustering, which is simultaneously effective for the present problem and simple enough for non-experts to grasp qualitatively. Moreover, our code transparently merges clusters neighboring each other across periodic boundaries using breadth-first search (BFS), an algorithm well-documented in computer science pedagogy. The fact that our code is written in Python -instead of proprietary languages -further enhances its value for reproducible science. PROGRAM SUMMARYProgram Title: Cluster Collector Licensing provisions: Creative Common by 4.0 Programming language: Python Nature of problem: Lattice simulations of, say, membrane proteins model the spatiotemporal organization of a system. In order to extract insights from such sim- ulations, we need robust methods for identifying clusters of simulated objects on the lattice. Solution method: Hierarchical clustering first identifies all potential clusters. Then, breadth-first search connects together clusters that neighbor each other across periodic boundaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.