Water electrolysis has benefits over other hydrogen generation technologies due to the lack of carbon footprint when integrated with a renewable source of energy. Specifically, proton exchange membrane (PEM) electrolysis is a promising technology for hydrogen generation applications because of the lack of corrosive electrolytes, small footprint, and ability to generate at high pressure, requiring only deionized water and an energy source. PEM electrolysis also produces very pure hydrogen, with none of the typical catalyst poisons that may be found in hydrogen produced from reforming. However, significant advances are required in order to in order to provide a cost-competitive hydrogen source for energy markets. This paper will discuss the current limitations and recent work by Proton Energy Systems towards reaching the DOE Hydrogen Program objective for distributed production of hydrogen from distributed water electrolysis of $3.70/gge by 2012. Status of TechnologyProton exchange membrane (PEM) electrolysis has been known for over 50 years, starting from GE technology. Proton Energy Systems is currently the world leader in manufacturing of PEM hydrogen generation products using electrolysis, with over 1300 units in the field. Pure hydrogen is used in a variety of industrial applications, including acting as a cooling fluid for power plant turbine generators, a reducing atmosphere for heat treating and semiconductor processing, and as a carrier gas for spectroscopic applications such as gas chromatography. Proton's on site hydrogen generators are costcompetitive with delivered hydrogen for these applications. However, interest in hydrogen for energy applications has increased the need to decrease capital cost and increase efficiency of electrolysis and other generation methods. PEM vs. AlkalineThere are two main types of low temperature electrolysis currently commercially available. Alkaline electrolysis uses liquid electrolyte, with high concentrations of potassium hydroxide to provide ionic conductivity and to participate in the electrochemical reactions. PEM electrolysis replaces the liquid electrolyte with a solid polymer electrolyte, which selectively conducts positive ions such as protons. The protons participate in the water-splitting reaction instead of hydroxide, creating a locally acidic environment in the cell.There are advantages and disadvantages of each system. One advantage of KOH electrolyzers is the stability of nickel and stainless steel in this environment, enabling elimination of expensive materials of construction. However, in the KOH system, the
Solid-state alkaline water electrolysis using a pure water feed offers several distinct advantages over liquid alkaline electrolyte water electrolysis and proton exchange membrane water electrolysis. These advantages include a larger array of electrocatalyst available for oxygen evolution, no electrolyte management, and the ability to apply differential pressure. To date, there have been only a handful of reports on solid-state alkaline water electrolyzers using anion exchange membranes (AEMs), and there have been no reports that investigate loss in system performance over time. In this work, a solidstate alkaline water electrolyzer was successfully demonstrated with several types of polysulfone-based AEMs using a relatively expensive but highly active lead ruthenate pyrochlore electrocatalyst for the oxygen evolution reaction. The electrolysis of ultrapure water at 50 C resulted in a current density of 400 mA cm À2 at 1.80 V. We demonstrated that the short-term degradation of water electrolyzer performance over time was largely a consequence of carbon dioxide intrusion into the system and could be easily remedied, while longterm deterioration was a consequence of irreversible AEM polymer degradation.
We evaluated an electrochemical catalyzation technique for producing gas-diffusion electrodes for proton-exchange-membrane fuel cells (PEMFC). The electrochemical technique deposits platinum catalyst particles in regions of the electrode that are in ionic contact with the proton-exchange membrane and in electronic contact with the carbon support. Since ionic and electronic contact are necessary components of catalyst utilization in gas-diffusion electrodes, the electrochemical catalyzation technique reduces the amount of platinum required for PEMFC. We present data for oxygen reduction and hydrogen oxidation with gas-diffusion electrodes containing 0.05 mg Pt/cm 2.
Water based electrolyzers offer a promising approach for generating hydrogen gas for renewable energy storage. 3M's nanostructured thin film (NSTF) catalyst technology platform has been shown to significantly reduce many of the performance, cost and durability barriers standing in the way of H 2 /air PEM fuel cells for vehicles. In this paper we describe results from the first evaluations of low loaded NSTF catalysts in H 2 /O 2 electrolyzers at Proton OnSite and Giner, Inc. Over two dozen membrane electrode assemblies comprising nine different NSTF catalyst types were tested in 11 short stack durability tests at Proton OnSite and 14 performance tests in 50 cm 2 single cells at Giner Electrochemical Systems. NSTF catalyst alloys of Pt 68 Co 29 Mn 3 , Pt 50 Ir 50 and Pt 50 Ir 25 Ru 25 , with Pt loadings in the range of 0.1 to 0.2 mg/cm 2 , were investigated for beginning-of-life performance and durability up to 4000 hours as both electrolyzer cathodes and anodes. Catalyst composition, deposition and process conditions were found to be important for meeting the performance of standard PGM blacks on electrolyzer anodes while using only 10% as much PGM catalyst. Analyses of MEA's after the durability tests by multiple techniques document changes in catalyst alloy composition, loading, crystallite structure and support stability.Pure pressurized hydrogen gas offers a convenient and predictable means for storing and transporting convertible energy from renewable or other energy sources for powering fuel cells for vehicle, portable and back-up power applications. Renewable energy sources such as wind and solar will require large, efficient and versatile energy storage means for load leveling over wide periods of time covering seconds to days for which electrochemical storage means offer many advantages. Regenerative fuel cells and H 2 /O 2 electrolyzers used for energy storage are key examples. Water based electrolyzers with higher heating value voltage efficiencies of 75% are projected to be able to produce H 2 in the $3-$4/kg range, competitive with current gasoline prices, at reasonable electricity costs on the order of $0.05/kW-Hr. [1][2][3][4] Proton exchange membrane (PEM) based water electrolyzers offer a promising pathway to efficient hydrogen production because of a small installation footprint, ease of handling the solid polymer electrolyte and ability to generate high pressure hydrogen with only deionized water and electricity as inputs. Commercial PEM electrolyzer costs based on current technology are excessive due both to low volume (batch) system assembly and high stack component material costs. However, the electrolyzer stacks and their internal components, viz. separator plates, PEM's and catalysts have cost factors that could benefit significantly from the technology improvements that PEM fuel cell development has enabled over the past decade or more. With respect to the electrocatalysts, current commercial PEM electrolyzers use 2 mg/cm 2 or more of precious group metals (PGM) on their anodes (oxygen ev...
Curve fitting of extended x-ray absorption fine structure (EXAFS) spectra, transmission electron microscopy (TEM) imaging, and Scherrer analysis of x-ray diffraction (XRD) are compared as methods for determining the mean crystallite size in polydisperse samples of platinum nanoparticles. By applying the techniques to mixtures of pure samples, it is found that EXAFS correctly determines the relative mean sizes of these polydisperse samples, while XRD tends to be weighted more toward the largest crystallites in the sample. Results for TEM are not clear cut, due to polycrystallinity and aggregation, but are consistent with the other results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.