Deoxycytidine kinase (NTP:deoxycytidine 5'-phosphotransferase, EC 2.7.1.74) is an enzyme that catalyzes phosphorylation of deoxyribonucleosides and a number of nucleoside analogs that are important in antiviral and cancer chemotherapy. Deficiency of this enzyme activity is associated with resistance to these agents, whereas increased enzyme activity is associated with increased activation of such compounds to cytotoxic nucleoside triphosphate derivatives. To characterize the regulation of expression of this gene, we have isolated genomic clones encompassing its entire coding and 5' flanking regions and delineated all the exon/intron boundaries. The gene extends over more than 34 kilobases on chromosome 4 and the coding region is composed of 7 exons ranging in size from 90 to 1544 base pairs (bp). The 5' flanking region is highly G+C-rich and contains four regions that are potential Spl binding sites. A 697-bp fragment encompassing 386 bp of 5' upstream region, the 250-bp frst exon, and 61 bp of the first intron was demonstrated to promote chloramphenicol acetyltransferase activity in a T-lymphoblast cell line and to have >6-fold greater activity in a Jurkat T-lymphoblast than in a Raji B-lymphoblast cell line. Our data suggest that these 5' sequences may contain elements that are important for the tissue-specific differences in deoxycytidine kinase expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.