Parylene deposition on 3D prints creates biocompatible microdevices and facilitates fabrication of master molds.
Fabrication of microfluidic devices by photolithography generally requires specialized training and access to a cleanroom. As an alternative, 3D printing enables cost-effective fabrication of microdevices with complex features that would be suitable for many biomedical applications. However, commonly used resins are cytotoxic and unsuitable for devices involving cells. Furthermore, 3D prints are generally refractory to elastomer polymerization such that they cannot be used as master molds for fabricating devices from polymers (e.g. polydimethylsiloxane, or PDMS). Different post-print treatment strategies, such as heat curing, ultraviolet light exposure, and coating with silanes, have been explored to overcome these obstacles, but none have proven universally effective. Here, we show that deposition of a thin layer of parylene, a polymer commonly used for medical device applications, renders 3D prints biocompatible and allows them to be used as master molds for elastomeric device fabrication. When placed in culture dishes containing human neurons, regardless of resin type, uncoated 3D prints leached toxic material to yield complete cell death within 48 hours, whereas cells exhibited uniform viability and healthy morphology out to 21 days if the prints were coated with parylene. Diverse PDMS devices of different shapes and sizes were easily casted from parylene-coated 3D printed molds without any visible defects. As a proof-of-concept, we rapid prototyped and tested different types of PDMS devices, including triple chamber perfusion chips, droplet generators, and microwells. Overall, we suggest that the simplicity and reproducibility of this technique will make it attractive for fabricating traditional microdevices and rapid prototyping new designs. In particular, by minimizing user intervention on the fabrication and post-print treatment steps, our strategy could help make microfluidics more accessible to the biomedical research community.
Fluorescent RNA-based biosensors are useful tools for real-time detection of molecules in living cells. These biosensors typically consist of a chromophore-binding aptamer and a target-binding aptamer, whereby the chromophore-binding aptamer is destabilized until a target is captured, which causes a conformational change to permit chromophore binding and an increase in fluorescence. The target-binding region is typically fabricated using known riboswitch motifs, which are already known to have target specificity and undergo structural changes upon binding. However, known riboswitches only exist for a limited number of molecules, significantly constraining biosensor design. To overcome this challenge, we designed a framework for producing mammalian cell-compatible biosensors using aptamers selected from a large random library by capture-SELEX. As a proof-of-concept, we generated and characterized a fluorescent RNA biosensor against L-dopa, the precursor of several neurotransmitters. Overall, we suggest that this approach will have utility for generating RNA biosensors that can reliably detect custom targets in mammalian cells.
Fluorescent RNA-based biosensors are useful tools for real-time detection of molecules in living cells. These biosensors typically consist of a chromophore-binding aptamer and a target-binding aptamer, whereby the chromophore-binding aptamer is destabilized until a target is captured, which causes a conformational change to permit chromophore binding and an increase in fluorescence. The target-binding region is typically fabricated using known riboswitch motifs, which are already known to have target specificity and undergo structural changes upon binding. However, known riboswitches only exist for a limited number of molecules, significantly constraining biosensor design. To overcome this challenge, we designed a framework for producing mammalian cell-compatible biosensors using aptamers selected from a large random library by Capture-SELEX. As a proof-of-concept, we generated and characterized a fluorescent RNA biosensor against L-dopa, the precursor of several neurotransmitters. Overall, we suggest that this approach will have utility for generating RNA biosensors that can reliably detect custom targets in mammalian cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.