Vortex ring collisions have attracted intense interest in both water and air studies (Baird in Proc R Soc Lond Ser Math Phys Sci 409:59–65, 1987, Poudel et al. in Phys Fluids 33:096105, 2021, Lim and Nickels in Nature 357:225, 1992, New et al. in Exp Fluids 57:109, 2016, Suzuki et al. in Geophys Res Lett 34, 2007, Yan et al. in J Fluids Eng 140:054502, 2018, New et al. in J Fluid Mech 899, 2020, Cheng et al. in Phys Fluids 31:067107, 2019, Hernández and Reyes in 29:103604, 2017, Mishra et al. in Phys Rev Fluids, 2021, Zednikova et al. in Chem Eng Technol 42:843–850, 2019, Kwon et al. in Nature 600:64–69, 2021). These toroidal structures spin around a central axis and travel in the original direction of impulse while spinning around the core until inertial forces become predominant causing the vortex flow to spontaneously decay to turbulence (Vortex Rings, https://projects.iq.harvard.edu/smrlab/vortex-rings). Previous studies have shown the collision of subsonic vortex rings resulting in reconnected vortex rings, but the production of a shock wave from the collision has not been demonstrated visibly (Lim and Nickels in Nature 357:225, 1992, Cheng et al. in Phys Fluids 31:067107, 2019). Here we present the formation of a shock wave due to the collision of explosively formed subsonic vortex rings. As the vortex rings travel at Mach 0.66 toward the collision point, they begin to trap high pressure air between them. Upon collision, high pressure air was imploded and released radially away from the axis of the collision, generating a visible shock wave traveling through and away from the colliding vortices at Mach 1.22. Our results demonstrate a pressure gradient with high pressure release creating a shock wave. We anticipate our study to be a starting point for more explosively formed vortex collisions. For example, explosives with different velocities of detonation could be tested to produce vortex rings of varying velocities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.