Background
With increasing research on system integration for image-guided therapy (IGT), there has been a strong demand for standardized communication among devices and software to share data such as target positions, images and device status.
Method
We propose a new, open, simple and extensible network communication protocol for IGT, named OpenIGTLink, to transfer transform, image and status messages. We conducted performance tests and use-case evaluations in five clinical and engineering scenarios.
Results
The protocol was able to transfer position data with submillisecond latency up to 1024 fps and images with latency of <10 ms at 32 fps. The use-case tests demonstrated that the protocol is feasible for integrating devices and software.
Conclusion
The protocol proved capable of handling data required in the IGT setting with sufficient time resolution and latency. The protocol not only improves the interoperability of devices and software but also promotes transitions of research prototypes to clinical applications..
Background Clinical use of image-guided needle placement robots has lagged behind laboratory-demonstrated robotic capability. Bridging this gap requires reliable and easy-to-use robotic systems.
A catheter-based transurethral ultrasound applicator with angularly directional heating patterns has been designed for prostate thermal therapy and evaluated in canine prostate in vivo using MRI to monitor and assess performance. The ultrasound transducer array (3.5 mm diameter tubular transducers, 180 degrees active sectors, approximately 7.5 MHz) was integrated to a flexible delivery catheter (4 mm OD), and encapsulated within an expandable balloon (35 mm x 10 mm OD, 80 ml min(-1) ambient water) for coupling and cooling of the prostatic urethra. These devices were used to thermally coagulate targeted portions of the canine prostate (n = 2) while using MR thermal imaging (MRTI) to monitor the therapy. MRI was also used for target definition, positioning of the applicator, and evaluation of target viability post-therapy. MRTI was based upon the complex phase-difference mapping technique using an interleaved gradient echo-planar imaging sequence with lipid suppression. MRTI derived temperature distributions, thermal dose exposures, T1-contrast enhanced MR images, and histology of sectioned prostates were used to define destroyed tissue zones and characterize the three-dimensional heating patterns. The ultrasound applicators produced approximately 180 degrees directed zones of thermal coagulation within targeted tissue which extended 15-20 mm radially to the outer boundary of the prostate within 15 min. Transducer activation lengths of 17 mm and 24 mm produced contiguous zones of coagulation extending axially approximately 18 mm and approximately 25 mm from base to apex, respectively. Peak temperatures around 90 degrees C were measured, with approximately 50 degrees C-52 degrees C corresponding to outer boundary t43 = 240 min at approximately 15 min treatment time. These devices are MRI compatible, and when coupled with multiplanar MRTI provide a means for selectively controlling the length and sector angle of therapeutic thermal treatment in the prostate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.