The anatomical characteristics of vestibular neurons, which are involved in controlling the horizontal vestibulo-ocular reflex, were studied by injecting horseradish peroxidase (HRP) into neurons whose response during spontaneous eye movements had been characterized in alert squirrel monkeys. Most of the vestibular neurons injected with HRP that had axons projecting to the abducens nucleus or the medial rectus subdivision of the oculomotor nucleus had discharge rates related to eye position and eye velocity. Three morphological types of cells were injected whose firing rates were related to horizontal eye movements. Two of the cell types were located in the ventral lateral vestibular nucleus and the ventral part of the medial vestibular nucleus (MV). These vestibular neurons could be activated at monosynaptic latencies following electrical stimulation of the vestibular nerve; increased their firing rate when the eye moved in the direction contralateral to the soma; had tonic firing rates that increased when the eye was held in contralateral positions; and had a pause in their firing rate during saccadic eye movements in the ipsilateral or vertical directions. Eleven of the above cells had axons that arborized exclusively on the contralateral side of the brainstem, terminating in the contralateral abducens nucleus, the dorsal paramedian pontine reticular formation, the prepositus nucleus, medial vestibular nucleus, dorsal medullary reticular formation, caudal interstitial nucleus of the medial longitudinal fasciculus, and raphé obscurus. Eight of the cells had axons that projected rostrally in the ascending tract of Deiters and arborized exclusively on the ipsilateral side of the brainstem, terminating in the ipsilateral medial rectus subdivision of the oculomotor nucleus and, in some cases, the dorsal paramedian pontine reticular formation or the caudal interstitial nucleus of the medial longitudinal fasciculus. Two MV neurons were injected that had discharge rates related to ipsilateral eye position, generated bursts of spikes during saccades in the ipsilateral direction, and paused during saccades in the contralateral direction. The axons of those cells arborized ipsilaterally, and terminated in the ipsilateral abducens nucleus, MV, prepositus nucleus, and the dorsal medullary reticular formation. The morphology of vestibular neurons that projected to the abducens nucleus whose discharge rate was not related to eye movements, or was related primarily to vertical eye movements, is also briefly presented.
The absorption band at 3.18 µ in the infrared spectrum of the monosubstituted derivative indicated the presence of a free rather than a combined carboxyl group, thus permitting an assignment of the above structure to this derivative.Trimethylsilyl 4-trimethylsiloxybenzoale. 4-Hydroxybenzoic acid, in contrast to salicylic acid, gave only one derivative, trimethylsilyl 4-trimethylsiloxybenzoate, when it was allowed to react with trimethylchlorosilane under the same conditions used for salicylic acid. The trimethylsilyl 4trimethylsiloxybenzoate was a -water clear liquid, b.p. 82°C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.