The nickel-iron hydrogenase from Chromatium vinosum adsorbs at a pyrolytic graphite edge-plane (PGE) electrode and catalyzes rapid interconversion of H(+)((aq)) and H(2) at potentials expected for the half-cell reaction 2H(+) right arrow over left arrow H(2), i.e., without the need for overpotentials. The voltammetry mirrors characteristics determined by conventional methods, while affording the capabilities for exquisite control and measurement of potential-dependent activities and substrate-product mass transport. Oxidation of H(2) is extremely rapid; at 10% partial pressure H(2), mass transport control persists even at the highest electrode rotation rates. The turnover number for H(2) oxidation lies in the range of 1500-9000 s(-)(1) at 30 degrees C (pH 5-8), which is significantly higher than that observed using methylene blue as the electron acceptor. By contrast, proton reduction is slower and controlled by processes occurring in the enzyme. Carbon monoxide, which binds reversibly to the NiFe site in the active form, inhibits electrocatalysis and allows improved definition of signals that can be attributed to the reversible (non-turnover) oxidation and reduction of redox centers. One signal, at -30 mV vs SHE (pH 7.0, 30 degrees C), is assigned to the [3Fe-4S](+/0) cluster on the basis of potentiometric measurements. The second, at -301 mV and having a 1. 5-2.5-fold greater amplitude, is tentatively assigned to the two [4Fe-4S](2+/+) clusters with similar reduction potentials. No other redox couples are observed, suggesting that these two sets of centers are the only ones in CO-inhibited hydrogenase capable of undergoing simple rapid cycling of their redox states. With the buried NiFe active site very unlikely to undergo direct electron exchange with the electrode, at least one and more likely each of the three iron-sulfur clusters must serve as relay sites. The fact that H(2) oxidation is rapid even at potentials nearly 300 mV more negative than the reduction potential of the [3Fe-4S](+/0) cluster shows that its singularly high equilibrium reduction potential does not compromise catalytic efficiency.
The type and properties of the Fe-S cluster in recombinant Escherichia coli biotin synthase have been investigated in as-prepared and dithionite-reduced samples using the combination of UV-visible absorption and variable-temperature magnetic circular dichroism (VTMCD), EPR, and resonance Raman spectroscopies. The results confirm the presence of one S = 0 [2Fe-2S]2+ cluster in each subunit of the homodimer in aerobically purified samples, and the Fe-S stretching frequencies suggest incomplete cysteinyl-S coordination. However, absorption and resonance Raman studies show that anaerobic reduction with dithionite in the presence of 60% (v/v) ethylene glycol or glycerol results in near-stoichiometric conversion of two [2Fe-2S]2+ clusters to form one S = 0 [4Fe-4S]2+ cluster with complete cysteinyl-S coordination. The stoichiometry and ability to effect reductive cluster conversion without the addition of iron or sulfide suggest that the [4Fe-4S]2+ cluster is formed at the subunit interface via reductive dimerization of [2Fe-2S]2+ clusters. EPR and VTMCD studies indicate that more than 50% of the Fe is present as [4Fe-4S]+ clusters in samples treated with 60% (v/v) glycerol after prolonged dithionite reduction. The [4Fe-4S]+ cluster exists as a mixed spin system with S = 1/2 (g = 2. 044, 1.944, 1.914) and S = 3/2 (g = 5.6 resonance) ground states. Subunit-bridging [4Fe-4S]2+,+ clusters, that can undergo oxidative degradation to [2Fe-2S]2+ clusters during purification, are proposed to be a common feature of Fe-S enzymes that require S-adenosylmethionine and function by radical mechanisms involving the homolytic cleavage of C-H or C-C bonds, i.e., biotin synthase, anaerobic ribonucleotide reductase, pyruvate formate lyase, lysine 2, 3-aminomutase, and lipoic acid synthase. The most likely role for the [4Fe-4S]2+,+ cluster lies in initiating the radical mechanism by directly or indirectly facilitating reductive one-electron cleavage of S-adenosylmethionine to form methionine and the 5'-deoxyadenosyl radical. It is further suggested that oxidative cluster conversion to [2Fe-2S]2+ clusters may play a physiological role in these radical enzymes, by providing a method of regulating enzyme activity in response to oxidative stress, without irreversible cluster degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.