The 20S proteasome is the main protease for the degradation of oxidatively damaged and intrinsically disordered proteins. When accumulation of disordered or oxidatively damaged proteins exceeds proper clearance in neurons, imbalanced pathway signaling or aggregation occurs, which have been implicated in the pathogenesis of several neurological disorders. Screening of the NIH Clinical Collection and Prestwick libraries identified the neuroleptic agent chlorpromazine as a lead agent capable of enhancing 20S proteasome activity. Chemical manipulation of chlorpromazine abrogated its D2R receptor binding affinity while retaining its ability to enhance 20S mediated proteolysis at low micromolar concentrations. The resulting small molecule enhancers of 20S proteasome activity induced the degradation of intrinsically disordered proteins, α-synuclein, and tau but not structured proteins. These small molecule 20S agonists can serve as leads to explore the therapeutic potential of 20S activation or as new tools to provide insight into the yet unclear mechanics of 20S-gate regulation.
Proteasomes are multienzyme complexes that maintain protein homeostasis (proteostasis) and important cellular functions through the degradation of misfolded, redundant, and damaged proteins. It is well established that aging is associated with the accumulation of damaged and misfolded proteins. This phenomenon is paralleled by declined proteasome activity. When the accumulation of redundant proteins exceed degradation, undesirable signaling and/or aggregation occurs and are the hallmarks of neurodegenerative diseases and many cancers. Thus, increasing proteasome activity has been recognized as a new approach to delay the onset or ameliorate the symptoms of neurodegenerative and other proteotoxic disorders. Enhancement of proteasome activity has many therapeutic potentials but is still a relatively unexplored field. In this perspective, we review current approaches, genetic manipulation, posttranslational modification, and small molecule proteasome agonists used to increase proteasome activity, challenges facing the field, and applications beyond aging and neurodegenerative diseases.
The 20S proteasome is the main protease that directly targets intrinsically disordered proteins (IDPs) for proteolytic degradation. Mutations, oxidative stress, or aging can induce the buildup of IDPs resulting in incorrect signaling or aggregation, associated with the pathogenesis of many cancers and neurodegenerative diseases. Drugs that facilitate 20S-mediated proteolysis therefore have many potential therapeutic applications. We report herein the modulation of proteasome assembly by the small molecule TCH-165, resulting in an increase in 20S levels. The increase in the level of free 20S corresponds to enhanced proteolysis of IDPs, including α-synuclein, tau, ornithine decarboxylase, and c-Fos, but not structured proteins. Clearance of ubiquitinated protein was largely maintained by single capped proteasome complexes (19S–20S), but accumulation occurs when all 19S capped proteasome complexes are depleted. This study illustrates the first example of a small molecule capable of targeting disordered proteins for degradation by regulating the dynamic equilibrium between different proteasome complexes.
Nuclear translocation of IGFBP3 by importin-β1 is a prerequisite for IGFBP3-induced apoptosis. The neuroprotective peptide humanin (HN) counteracts IGFBP3-induced cell death. However, the mechanism by which humanin protects cells is currently unknown. The natural synthesis of this peptide decreases with age, coincident with the likelihood for the development of Alzheimer's Disease, making it a promising target for therapeutics. We have examined the effect of full-length humanin and a synthetic analogue (HN 3-19), known to be sufficient for its neuroprotective function, on the interaction between IGFBP3 and importin-β1. Using competitive ligand dot blotting, co-immunoprecipitation, and an ELISA-based binding assay, we determined that 1) humanin binds to IGFBP3 with a Kd of 5.05 µM and 2) both humanin (IC50 of 18.1 µM) and HN 3-19 (IC50 of 10.3 μM) interfere with the binding of importin-β1 to IGFBP3 in vitro. We also demonstrated that HN 3-19 is able to reduce the rate of apoptosis in a human lung adenocarcinoma cell line, suggesting a possible mechanism of action for humanin as an inhibitor of IGFBP3 nuclear translocation. Understanding the exact mechanism by which humanin and its analogue, HN 3-19, bind to IGFPB3 and regulate its interaction with importin-β1 will open the door to modulating the protein-protein interactions involved in neuronal cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.