The Na ؉ -K ؉ co-transporter HKT1, first isolated from wheat, mediates high-affinity K ؉ uptake. The function of HKT1 in plants, however, remains to be elucidated, and the isolation of HKT1 homologs from Arabidopsis would further studies of the roles of HKT1 genes in plants. We report here the isolation of a cDNA homologous to HKT1 from Arabidopsis (AtHKT1) and the characterization of its mode of ion transport in heterologous systems. The deduced amino acid sequence of AtHKT1 is 41% identical to that of HKT1, and the hydropathy profiles are very similar. AtHKT1 is expressed in roots and, to a lesser extent, in other tissues. Interestingly, we found that the ion transport properties of AtHKT1 are significantly different from the wheat counterpart. As detected by electrophysiological measurements, AtHKT1 functioned as a selective Na ؉ uptake transporter in Xenopus laevis oocytes, and the presence of external K ؉ did not affect the AtHKT1-mediated ion conductance (unlike that of HKT1). When expressed in Saccharomyces cerevisiae, AtHKT1 inhibited growth of the yeast in a medium containing high levels of Na ؉ , which correlates to the large inward Na ؉ currents found in the oocytes. Furthermore, in contrast to HKT1, AtHKT1 did not complement the growth of yeast cells deficient in K ؉ uptake when cultured in K ؉ -limiting medium. However, expression of AtHKT1 did rescue Escherichia coli mutants carrying deletions in K ؉ transporters. The rescue was associated with a less than 2-fold stimulation of K ؉ uptake into K ؉ -depleted cells. These data demonstrate that AtHKT1 differs in its transport properties from the wheat HKT1, and that AtHKT1 can mediate Na ؉ and, to a small degree, K ؉ transport in heterologous expression systems.
The sequence of events following the addition of 0.5 M NaCl to cells of Escherichia coli growing in a minimal mineral medium was investigated. Immediately after upshock the cells took up a large amount of K+ and synthesized approximately half the equivalent amount of glutamate concomitantly. After 30 min the cells started to synthesize trehalose, and after 2 h they had replaced most of their initial osmoprotectants by the carbohydrate. Cell trehalose was rapidly replaced by proline, taken up from the medium when added to the osmoadapting cells. The initial rate of this proline uptake was extremely rapid, and with rates observed of up to 0.6 mmol x min-1 x g-1 of cell protein it was approximately ten times faster than that reported in the literature for non-growing cells. These results indicate that for osmoadaptation of growing cells of E. coli the uptake of proline has priority over the synthesis of trehalose, which in its turn is preferred above K+ and glutamate as osmoprotectants. We observed that two mutants with unknown lesions, but which are known to be impaired in osmoadaptation, were inhibited in replacing K+ and glutamate by trehalose, indicating that this is the basis for their defect in osmoadaptation. Further experiments revealed that neither internal pH nor the membrane potential nor the transmembrane protonmotive force are likely to be involved in osmoadaptation in E. coli. However, during osmoadaptation a high internal potassium concentration appeared to stimulate the derepression of proline-uptake systems (mainly system ProP).
Plant HKT proteins comprise a family of cation transporters together with prokaryotic KtrB, TrkH, and KdpA transporter subunits and fungal Trk proteins. These transporters contain four loop domains in one polypeptide with a proposed distant homology to K ؉ channel selectivity filters. Functional expression in yeast and Xenopus oocytes revealed that wheat HKT1 mediates Na ؉ -coupled K ؉ transport. Arabidopsis AtHKT1, however, transports only Na ؉ in eukaryotic expression systems. To understand the molecular basis of this difference we constructed a series of AtHKT1͞HKT1 chimeras and introduced point mutations to AtHKT1 and wheat HKT1 at positions predicted to be critical for K ؉ selectivity. A single-point mutation, Ser-68 to glycine, was sufficient to restore K ؉ permeability to AtHKT1. The reverse mutation in HKT1, Gly-91 to serine, abrogated K ؉ permeability. This glycine in P-loop A of AtHKT1 and HKT1 can be modeled as the first glycine of the K ؉ channel selectivity filter GYG motif. The importance of such filter glycines for K ؉ selectivity was confirmed by interconversion of Ser-88 and Gly-88 in the rice paralogues OsHKT1 and OsHKT2. Surprisingly, all HKT homologues known from dicots have a serine at the filter position in P-loop A, suggesting that these proteins function mainly as Na ؉ transporters in plants and that Na ؉ ͞K ؉ symport in HKT proteins is associated with a glycine in the filter residue. These data provide experimental evidence that the glycine residues in selectivity filters of HKT proteins are structurally related to those of K ؉ channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.