Aluminum alloy metal matrix composites are a class of materials object of large and intensive research during the last years. In this study an AA2124 aluminum alloy were processed by means of mechanical alloying added by 10, 20 and 20 percent of silicon carbide (SiC) in vibratory SPEX type mill during 60 and 120 minutes. After this the composites powders obtained were characterized by means of Scanning Electron Microscopy (SEM) plus Energy Dispersive Spectroscopy (EDS) to determine the powders morphology. In order to consolidate the AA2124 aluminum alloy composites reinforced by silicon carbide (SiC) composites, the powders processed by high energy ball milling technique were hot extruded and the billets were characterized by SEM to determine the microstructure and the distribution of the reinforced ceramic phase of silicon carbide throughout the aluminum matrix and at last the microhardiness Vickers technique were used to evaluate the mechanical properties.
This work aims the processing of metal matrix AA2124 aluminium alloy composites reinforced by alumina (Al2O3) and silicon carbide (SiC). The composites were manufactured by powder metallurgy techniques, in a grinding using a ball mill spex type (high energy) at a ratio of balls/ powders of 10:1 and grinding time of 30 and 60 minutes using stearic acid (C18H36O2) as lubricant to each one of the samples. The fractions used in both reinforcements were 5, 10 and 15% in mass. The microstructural characterizations of AA2124 alloy powders with the reinforcements of alumina (Al2O3) and silicon carbide (SiC) powders were obtained by scanning electron microscopy (SEM) and the particles sizes and distribuition of the particle sizes in powders produced were obtained by laser diffraction, whereas the sintered characterizations were obtained by scanning electron microscopy (SEM) and mechanical characterization of the sintered tests was achieved by Vickers hardness (HV). The composites were uniaxially cold compacted (room temperature), at a pressure of 7.0 t / cm2, thus forming small pellets that were sintered (at a temperature of 500 °C) in a vacuum furnace at IPEN (SP). There was observed the influence of the respective bulk fractions of reinforcement particles used in mechanical characteristics presented in the resulting composites.
Composites are combinations of two materials in which one of the materials, called the reinforcing phase, is in the form of fibers, sheets, or particles and is embedded in the other materials called the matrix phase. If the composite is designed and fabricated correctly, it combines the strength of the reinforcement with the toughness of the matrix to achieve a combination of desirable properties not available in any single conventional material. In this work of research aluminium alloy AA6061 was reinforced by 5, 10 and 15% (in mass %) of SiC and Al2O3 by mechanical alloying in a vibratory type SPEX mill, cold uniaxial compaction and vacuum sintering in order to investigate the influence of the particulate phase in the microstructure and mechanical properties of the composites obtained. The microstructure of the powders and the sintered materials were evaluated by SEM and the hardness was evaluated by hardness tests.
The aliminium alloys are of particular interest to both the aerospace industry and automotive industry because of their attractive combinations of properties such as medium strength, formability, weldability, corrosion resistance and low cost. Compared with a metal matrix material, significant improvements in the mechanical and physical properties such as strength, toughness, and thermal conductivity can be achievied in metal matrix composites (MMCs). In this work of investigation aluminium alloy AA6061 was reinforced by 5, 10 and 15% (in mass %) of Si3N4 (silicon nitride) and AlN (aluminium nitride) by mechanical alloying in a vibratory type SPEX mill, cold uniaxial compaction and vacuum sitering in order to investigate the influence of the particulate phase in the microstructure and mechanical properties of the composites obtained. The microstructure of the powders and the sintered materials were evaluated by means of SEM and the hardness and were evaluated by hardness test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.