Recoverin is a Ca2؉ -regulated signal transduction modulator expressed in the vertebrate retina that has been implicated in visual adaptation. An intriguing feature of recoverin is a cluster of charged residues at its C terminus, the functional significance of which is largely unclear. To elucidate the impact of this segment on recoverin structure and function, we have investigated a mutant lacking the C-terminal 12 amino acids. Whereas in myristoylated recoverin the truncation causes an overall decrease in Ca 2؉ sensitivity, results for the non-myristoylated mutant indicate that the truncation primarily affects the high affinity EF-hand 3. The three-dimensional structure of the mutant has been determined by x-ray crystallography. In addition to significant changes in average coordinates compared with wild-type recoverin, the structure provides strong indication of increased conformational flexibility, particularly in the C-terminal domain. Based on these observations, we propose a novel role of the C-terminal segment of recoverin as an internal modulator of Ca 2؉ sensitivity.Many biological processes are triggered or regulated by transient intracellular Ca 2ϩ signals. Because these signals elicit specific cellular responses, the precise detection of changes in cytoplasmic Ca 2ϩ concentration is a crucial step in many signaling pathways and requires sensing of Ca 2ϩ within very different concentration ranges. Ca 2ϩ -binding proteins work as intracellular Ca 2ϩ sensors and regulate their targets with high specificity and high spatial and temporal resolution. To achieve these remarkable tasks, Ca 2ϩ is recognized by specific amino acid sequence motifs, for example the C 2 domain and the EF-hand motif (1, 2). These motifs can detect subtle changes in Ca 2ϩ concentration and allow a fine tuning of Ca 2ϩ signaling. However, it remains a challenging problem to understand at a structural level how minimal changes in cytoplasmic Ca 2ϩ are reliably detected.The EF-hand superfamily of Ca 2ϩ -binding proteins includes, among others, the family of neuronal calcium sensor (NCS) 3 proteins (3), which are named because of their predominant expression in neuronal tissue. NCS proteins are grouped into five subfamilies and show a rather heterogeneous localization and function in the nervous system (4). In the photoreceptor cells of the vertebrate retina, for instance, recoverin and several isoforms of guanylate cyclase activating protein (GCAP) detect changes in Ca 2ϩ concentration during or after illumination and regulate their target proteins in Ca 2ϩ -dependent feedback loops (5).Recoverin inhibits rhodopsin kinase at high cytoplasmic Ca 2ϩ concentration (6 -9), a process that is thought to contribute to light adaptation of photoreceptor cells (9, 10). Recoverin harbors a myristoyl group at its N terminus (11), which is buried in a hydrophobic cleft in the Ca 2ϩ -free state (12). Upon Ca 2ϩ binding to the two functional EF-hands (EF-hand 2 and EFhand 3) (13) the acyl chain is exposed to the solvent. This socalled Ca 2ϩ -myrist...
NCS (neuronal Ca2+ sensor) proteins belong to a family of calmodulin-related EF-hand Ca2+-binding proteins which, in spite of a high degree of structural similarity, are able to selectively recognize and regulate individual effector enzymes in a Ca2+-dependent manner. NCS proteins vary at their C-termini, which could therefore serve as structural control elements providing specific functions such as target recognition or Ca2+ sensitivity. Recoverin, an NCS protein operating in vision, regulates the activity of rhodopsin kinase, GRK1, in a Ca2+-dependent manner. In the present study, we investigated a series of recoverin forms that were mutated at the C-terminus. Using pull-down assays, surface plasmon resonance spectroscopy and rhodopsin phosphorylation assays, we demonstrated that truncation of recoverin at the C-terminus significantly reduced the affinity of recoverin for rhodopsin kinase. Site-directed mutagenesis of single amino acids in combination with structural analysis and computational modelling of the recoverin-kinase complex provided insight into the protein-protein interface between the kinase and the C-terminus of recoverin. Based on these results we suggest that Phe3 from the N-terminal helix of rhodopsin kinase and Lys192 from the C-terminal segment of recoverin form a cation-π interaction pair which is essential for target recognition by recoverin. Taken together, the results of the present study reveal a novel rhodopsin-kinase-binding site within the C-terminal region of recoverin, and highlights its significance for target recognition and regulation.
Dry eye syndrome (DES) is an age-related condition increasingly detected in younger people of risk groups, including patients who underwent ocular surgery or long-term general anesthesia. Being a multifactorial disease, it is characterized by oxidative stress in the cornea and commonly complicated by ocular surface inflammation. Polyetiologic DES is responsive to SkQ1, a mitochondria-targeted antioxidant suppressing age-related changes in the ocular tissues. Here, we demonstrate safety and efficacy of topical administration of SkQ1 at a dosage of 7.5 μM for the prevention of general anesthesia-induced DES in rabbits. The protective action of SkQ1 improves clinical state of the ocular surface by inhibiting apoptotic and prenecrotic changes in the corneal epithelium. The underlying mechanism involves the suppression of the oxidative stress supported by the stimulation of intrinsic antioxidant activity and the activity of antioxidant enzymes, foremost glutathione peroxidase and glutathione reductase, in the cornea. Furthermore, SkQ1 increases antioxidant activity and stability of the tear film and produces anti-inflammatory effect exhibited as downregulation of TNF-α and IL-6 and pronounced upregulation of IL-10 in tears. Our data suggest novel features of SkQ1 and point to its feasibility in patients with DES and individuals at risk for the disease including those subjected to general anesthesia.
Neuronal calcium sensor-1 (NCS-1) protein is abundantly expressed in the central nervous system and retinal neurons, where it regulates many vital processes such as synaptic transmission. It coordinates three calcium ions by EF-hands 2-4, thereby transducing Ca2+ signals to a wide range of protein targets, including G protein-coupled receptors and their kinases. Here, we demonstrate that NCS-1 also has Zn2+-binding sites, which affect its structural and functional properties upon filling. Fluorescence and circular dichroism experiments reveal the impact of Zn2+ binding on NCS-1 secondary and tertiary structure. According to atomic absorption spectroscopy and isothermal titration calorimetry studies, apo-NCS-1 has two high-affinity (4 × 106 M-1) and one low-affinity (2 × 105 M-1) Zn2+-binding sites, whereas Mg2+-loaded and Ca2+-loaded forms (which dominate under physiological conditions) bind two zinc ions with submicromolar affinity. Metal competition analysis and circular dichroism studies suggest that Zn2+-binding sites of apo- and Mg2+-loaded NCS-1 overlap with functional EF-hands of the protein. Consistently, high Zn2+ concentrations displace Mg2+ from the EF-hands and decrease the stoichiometry of Ca2+ binding. Meanwhile, one of the EF-hands of Zn2+-saturated NCS-1 exhibits a 14-fold higher calcium affinity, which increases the overall calcium sensitivity of the protein. Based on QM/MM molecular dynamics simulations, Zn2+ binding to Ca2+-loaded NCS-1 could occur at EF-hands 2 and 4. The high-affinity zinc binding increases the thermal stability of Ca2+-free NCS-1 and favours the interaction of its Ca2+-loaded form with target proteins, such as dopamine receptor D2R and GRK1. In contrast, low-affinity zinc binding promotes NCS-1 aggregation accompanied by the formation of twisted rope-like structures. Altogether, our findings suggest a complex interplay between magnesium, calcium and zinc binding to NCS-1, leading to the appearance of multiple conformations of the protein, in turn modulating its functional status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.