Properties of blood cells and their interaction determine their distribution in flow. It is observed experimentally that erythrocytes migrate to the flow axis, platelets to the vessel wall, and leucocytes roll along the vessel wall. In this work, a three-dimensional model based on Dissipative Particle Dynamics method and a new hybrid (discrete-continuous) model for blood cells is used to study the interaction of erythrocytes with platelets and leucocytes in flow. Erythrocytes are modelled as elastic highly deformable membranes, while platelets and leucocytes as elastic membranes with their shape close to a sphere. Separation of erythrocytes and platelets in flow is shown for different values of hematocrit. Erythrocyte and platelet distributions are in a good qualitative agreement with the existing experimental results. Migration of leucocyte to the vessel wall and its rolling along the wall is observed.
The oscillatory growth of a dilute binary alloy has recently been described by a nonlinear oscillator equation that applies to small temperature gradients and large growth velocities in the setup of directional solidification. Based on a one-dimensional stability analysis of stationary solutions of this equation, we explore in the present paper the complete region where the solidification front propagates in an oscillatory way. The boundary of this region is calculated exactly, and the nature of the oscillations is evaluated numerically in several segments of the region.
In this study, we considered a continuous model of platelet thrombus growth in an arteriole. A special model describing the adhesion of platelets in terms of their concentration was derived. The applications of the derived model are not restricted to only describing arterial platelet thrombus formation; the model can also be applied to other similar adhesion processes. The model reproduces an auto-wave solution in the one-dimensional case; in the two-dimensional case, in which the surrounding flow is taken into account, the typical torch-like thrombus is reproduced. The thrombus shape and the growth velocity are determined by the model parameters. We demonstrate that the model captures the main properties of the thrombus growth behavior and provides us a better understanding of which mechanisms are important in the mechanical nature of the arterial thrombus growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.