Abstract.A coordinated experiment involving ionospheric heating and VHF observations of polar mesosphere summer echoes (PMSE) has recently been conducted at the EISCAT facility near Troms0, Norway. We have demonstrated for the first time that ionospheric heating can influence VHF radar returns associated with PMSE. Artificially elevating the electron temperatures within the PMSE layer has been shown to reduce the echo power. Based on this and other results from the experiment, it is suggested that the observed reduction in PMSE power is related to an enhancement of the electron diffusivity through the heating.
Abstract.We have considered the effect that a local reduction in the electron density (an electron bite-out), caused by electron absorption on to dust particles, can have on the artificial electron heating in the height region between 80 to 90 km, where noctilucent clouds (NLC) and the radar phenomenon PMSE (Polar Mesospheric Summer Echoes) are observed. With an electron density profile without biteouts, the heated electron temperature T e,hot will generally decrease smoothly with height in the PMSE region or there may be no significant heating effect present. Within a biteout T e,hot will decrease less rapidly and can even increase slightly with height if the bite-out is strong. We have looked at recent observations of PMSE which are affected by artificial electron heating, with a heater cycling producing the new overshoot effect. According to the theory for the PMSE overshoot the fractional increase in electron temperature T e,hot /T i , where T i is the unaffected ion temperature = neutral temperature, can be found from the reduction in PMSE intensity as the heater is switched on. We have looked at results from four days of observations with the EIS-CAT VHF radar (224 MHz), together with the EISCAT heating facility. We find support for the PMSE overshoot and heating model from a sequence of observations during one of the days where the heater transmitter power is varied from cycle to cycle and where the calculated T e,hot /T i is found to vary in proportion to the transmitter power. We also looked for signatures of electron bite-outs by examining the variation of T e,hot /T i with height for the three other days. We find that the height variation of T e,hot /T i is very different on the three days. On one of the days we see typically that this ratio can increase with height, showing the presence of a bite-out, while on the next day the heating factor mainly decreases with height, indicating that the fractional amount of dust is low, so that the electron density is hardly affected by it. On the third day there is little heating effect on the PMSE layer. This is probably due to a sufficiently high electron densityCorrespondence to: O. Havnes (oha003@asp.uit.no) in the atmosphere below the PMSE layer, so that the transmitted heater power is absorbed in these lower layers. On this day the D-region, as given by the UHF (933 MHz) observations, extends deeper down in the atmosphere than on the other two days, indicating that the degree of ionization in and below the PMSE layers is higher as well.
Abstract. During the MaCWAVE winter campaign in January 2003, layers of enhanced echo power known as PMWE (Polar Mesosphere Winter Echoes) were detected by the ESRAD 52 MHz radar on several occasions. The cause of these echoes is unclear and here we use observations by meteorological and sounding rockets and by lidar to test whether neutral turbulence or aerosol layers might be responsible. PMWE were detected within 30 min of meteorological rocket soundings (falling spheres) on 5 separate days. The observations from the meteorological rockets show that, in most cases, conditions likely to be associated with neutral atmospheric turbulence are not observed at the heights of the PMWE. Observations by instrumented sounding rockets confirm low levels of turbulence and indicate considerable small-scale structure in charge density profiles. Comparison of falling sphere and lidar data, on the other hand, show that any contribution of aerosol scatter to the lidar signal at PMWE heights is less than the detection threshold of about 10%.
Abstract. The ESRAD 52-MHz and the EISCAT 224-MHz radars in northern Scandinavia observed thin layers of strongly enhanced radar echoes from the mesosphere (Polar Mesosphere Winter Echoes -PMWE) during a solar proton event in November 2004. Using the interferometric capabilities of ESRAD it was found that the scatterers responsible for PMWE show very high horizontal travel speeds, up to 500 ms −1 or more, and high aspect sensitivity, with echo arrival angles spread over as little as 0.3 • . ESRAD also detected, on some occasions, discrete scattering regions moving across the field of view with periodicities of a few seconds. The very narrow, vertically directed beam of the more powerful EISCAT radar allowed measurements of the spectral widths of the radar echoes both inside the PMWE and from the background plasma above and below the PMWE. Spectral widths inside the PMWE were found to be indistinguishable from those from the background plasma. We propose that scatter from highly-damped ion-acoustic waves generated by partial reflection of infrasonic waves provides a reasonable explanation of the characteristics of the very strong PMWE reported here.
The EISCAT (European Incoherent SCATer) Scientific Association has provided versatile incoherent scatter (IS) radar facilities on the mainland of northern Scandinavia (the EISCAT UHF and VHF radar systems) and on Svalbard (the electronically scanning radar ESR (EISCAT Svalbard Radar) for studies of the high-latitude ionised upper atmosphere (the ionosphere). The mainland radars were constructed about 30 years ago, based on technological solutions of that time. The science drivers of today, however, require a more flexible instrument, which allows measurements to be made from the troposphere to the topside ionosphere and gives the measured parameters in three dimensions, not just along a single radar beam. The possibility for continuous operation is also an essential feature. To facilitatefuture science work with a world-leading IS radar facility, planning of a new radar system started first with an EU-funded Design Study (2005-2009) and has continued with a follow-up EU FP7 EISCAT_3D Preparatory Phase project (2010-2014). The radar facility will be realised by using phased arrays, and a key aspect is the use of advanced software and data processing techniques. This type of software radar will act as a pathfinder for other facilities worldwide. The new radar facility will enable the EISCAT_3D science community to address new, significant science questions as well as to serve society, which is increasingly dependent on space-based technology and issues related to space weather. The location of the radar within the auroral oval and at the edge of the stratospheric polar vortex is also ideal for studies of the long-term variability in the atmosphere and global change. This paper is a summary of the EISCAT_3D science case, which was prepared as part of the EU-funded Preparatory Phase project for the new facility. Three science working groups, drawn from the EISCAT user community, participated in preparing this document. In addition to these working group members, who are listed as authors, thanks are due to many others in the EISCAT scientific community for useful contributions, discussions, and support.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.