The aim of the present study was to assess the influence of ripening container’s material on the bacterial diversity of Feta cheese PDO (Protected Designation of Origin). The microbiota of fresh and mature cheese produced in plastic and stainless steel container was monitored by microbial enumeration and 16s rRNA gene sequencing. According to the obtained results, lactic acid bacteria (LAB) was the dominant microbiota of fresh and mature cheese. Metagenomics data revealed that fresh cheese was dominated by Lactococcus followed by members of Enterobacteriaceae family and Pseudomonas. Similarly, Lactococcus was the most abundant genus detected in mature cheese (54 days and 120 days), regardless of the container’s material. In both fresh and mature cheese, species of Pseudomonas, Streptococcus, Acinetobacter, Lactobacillus, Flavobacterium, and Carnobacterium were detected. The abundance of Enterobacteriaceae, Moraxellaceae and Pseudomonadaceae in mature cheese ripened in stainless steel container seems to be numerically reduced after 120 days of storage compared to the cheese ripened in plastic container but not significant differences were observed (p > 0.05). In conclusion, metagenomic analysis suggests that ripening container’s material does not affect the microbial community responsible for the ripening of feta cheese PDO.
Spectroscopic and imaging methods coupled with multivariate data analysis have been increasingly studied for the assessment of food quality. The objective of this work was the estimation of microbiological quality of minced pork using non-invasive spectroscopy-based sensors. For this purpose, minced pork patties were stored aerobically at different isothermal (4, 8, and 12 °C) and dynamic temperature conditions, and at regular time intervals duplicate samples were subjected to (i) microbiological analyses, (ii) Fourier transform infrared (FTIR) and visible (VIS) spectroscopy measurements, and (iii) multispectral image (MSI) acquisition. Partial-least squares regression models were trained and externally validated using the microbiological/spectral data collected at the isothermal and dynamic temperature storage conditions, respectively. The root mean squared error (RMSE, log CFU/g) for the prediction of the test (external validation) dataset for the FTIR, MSI, and VIS models was 0.915, 1.173, and 1.034, respectively, while the corresponding values of the coefficient of determination (R2) were 0.834, 0.727, and 0.788. Overall, all three tested sensors exhibited a considerable potential for the prediction of the microbiological quality of minced pork.
The aim of this study was to investigate on an industrial scale the potential of multispectral imaging (MSI) in the assessment of the quality of different poultry products. Therefore, samples of chicken breast fillets, thigh fillets, marinated souvlaki and burger were subjected to MSI analysis during production together with microbiological analysis for the enumeration of Total Viable Counts (TVC) and Pseudomonas spp. Partial Least Squares Regression (PLS-R) models were developed based on the spectral data acquired to predict the “time from slaughter” parameter for each product type. Results showed that PLS-R models could predict effectively the time from slaughter in all products, while the food matrix and variations within and between batches were identified as significant factors affecting the performance of the models. The chicken thigh model showed the lowest RMSE value (0.160) and an acceptable correlation coefficient (r = 0.859), followed by the chicken burger model where RMSE and r values were 0.285 and 0.778, respectively. Additionally, for the chicken breast fillet model the calculated r and RMSE values were 0.886 and 0.383 respectively, whereas for chicken marinated souvlaki, the respective values were 0.934 and 0.348. Further improvement of the provided models is recommended in order to develop efficient models estimating time from slaughter.
Chicken is one of the most widely consumed meats worldwide. The exploration of the bacterial diversity of chicken meat may provide new insights into the chicken-associated microbiome that will lead to moderation of food spoilage or safety. This study was undertaken to explore the bacterial communities of chicken breast and thigh fillets stored at refrigeration (0 °C and 5 °C) and slightly abuse (10 °C) temperatures for 5 days through conventional cultural methods along with next-generation sequencing (NGS) analysis. Total viable counts (TVC), Brochothrix thermosphacta, Pseudomonas spp., and lactic acid bacteria (LAB) were enumerated, while the bacterial communities were mapped through 16S rRNA gene amplicon sequencing. Chicken breast and thigh fillets possessed a complex bacterial structure that incorporated a total of >200 Operational Taxonomic Units (OTUs) at the genus level. The core microbiota of fresh samples consisted of Acinetobacter, Brochothrix, Flavobacterium, Pseudomonas, Psychrobacter, and Vibrionaceae (family). These genera persisted until the end of storage in >80% of samples, except Psychrobacter and Flavobacterium, while Photobacterium was also identified. Hierarchical clustering showed a distinction of samples based on storage time and chicken part. Conventional plate counting with growth media commonly used in spoilage studies did not always correspond to the microbial community profiles derived from NGS analysis, especially in Pseudomonas, Acinetobacter, Photobacterium, and Vibrionaceae. Results of the present study highlight Photobacterium and Vibrionaceae, in general, as potent chicken meat spoilers and suggest the necessity to combine classical microbiological methods along with NGS technologies to characterize chicken meat spoilage microbiota.
Spectroscopic methods in tandem with machine learning methodologies have attracted considerable research interest for the estimation of food quality. The objective of this study was the evaluation of Fourier transform infrared (FTIR) spectroscopy and multispectral imaging (MSI) coupled with appropriate machine learning regression algorithms for assessing meat microbiological quality. For this purpose, minced pork patties were stored aerobically and under modified atmosphere packaging (MAP) conditions, at isothermal and dynamic temperature conditions. At regular time intervals during storage, samples were subjected to (i) microbiological analysis, (ii) FTIR measurements and (iii) MSI acquisition. The collected FTIR data were processed by feature extraction methods to reduce dimensionality, and subsequently Support Vector Machines (SVM) regression models were trained using spectral features (FTIR and MSI) to estimate microbiological quality of meat (microbial population). The regression models were evaluated with different experimental replicates using distinct meat batches. The performance of the models was evaluated in terms of correlation coefficient (r), root mean square error (RMSE), mean absolute error (MAE) and residual prediction deviation (RPD). The RMSE values for the microbial population estimation models using FTIR were 1.268 and 1.024 for aerobic and MAP storage, respectively. The performance in terms of RMSE for the MSI-based models was 1.144 for aerobic and 0.923 for MAP storage, while the combination of FTIR and MSI spectra resulted in models with RMSE equal to 1.146 for aerobic and 0.886 for MAP storage. The experimental results demonstrated the potential of estimating the microbiological quality of minced pork meat from spectroscopic data. INDEX TERMS Food technology, microbiological quality, Fourier transform infrared spectroscopy, multispectral imaging, machine learning, support vector regression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.