Chronic kidney disease (CKD) is a complex disorder with a strong genetic component. A number of common sequence variants have been found to associate with serum creatinine (SCr), estimated glomerular filtration rate (eGFR) and/or CKD. We imputed 24 million single-nucleotide polymorphisms and insertions/deletions identified by whole-genome sequencing of 2230 Icelanders into 81 656 chip-typed individuals and 112 630 relatives of genotyped individuals over the age of 18 with SCr measurements. The large set of sequenced individuals allowed accurate imputation of variants to a minor allele frequency (MAF) of 0.1%. We tested the imputed variants for association with SCr. In addition to replicating established loci, we discovered missense and loss-of-function variants associating with SCr in three solute carriers (SLC6A19, SLC25A45 and SLC47A1) and two E3 ubiquitin ligases (RNF186 and RNF128). All the variants are within coding sequences and all but one are rare (MAF <2%) with SCr effects between 0.085 and 0.129 standard deviations. These rare variants have a larger effect on SCr than previously reported common variants, explaining 0.5% of the variability of SCr in Icelanders in addition to the 1% already accounted for. We tested the five variants associating with SCr for association with CKD in an Icelandic sample of 15 594 cases and 291 428 controls. Three of the variants also associated with CKD. These variants may either affect kidney function or creatinine synthesis and excretion. Of note were four mutations in SLC6A19 that associate with reduced SCr, three of which have been shown to cause Hartnup disease.
Urine dipstick tests are widely used in routine medical care to diagnose kidney and urinary tract and metabolic diseases. Several environmental factors are known to affect the test results, whereas the effects of genetic diversity are largely unknown. We tested 32.5 million sequence variants for association with urinary biomarkers in a set of 150 274 Icelanders with urine dipstick measurements. We detected 20 association signals, of which 14 are novel, associating with at least one of five clinical entities defined by the urine dipstick: glucosuria, ketonuria, proteinuria, hematuria and urine pH. These include three independent glucosuria variants at SLC5A2, the gene encoding the sodium-dependent glucose transporter (SGLT2), a protein targeted pharmacologically to increase urinary glucose excretion in the treatment of diabetes. Two variants associating with proteinuria are in LRP2 and CUBN, encoding the co-transporters megalin and cubilin, respectively, that mediate proximal tubule protein uptake. One of the hematuria-associated variants is a rare, previously unreported 2.5 kb exonic deletion in COL4A3. Of the four signals associated with urine pH, we note that the pH-increasing alleles of two variants (POU2AF1, WDR72) associate significantly with increased risk of kidney stones. Our results reveal that genetic factors affect variability in urinary biomarkers, in both a disease dependent and independent context.
bp = base pairs; DMEM = Dulbecco's modified Eagle's medium; ELISA = enzyme-linked immunosorbent assay; FCS = fetal calf serum; wt = wild type. Breast Cancer Research Vol 6 No 4 Mikaelsdottir et al. Research articleThe Icelandic founder mutation BRCA2 999del5: analysis of expression AbstractIntroduction: A founder mutation in the BRCA2 gene (BRCA2 999del5) accounts for 7-8% of female breast cancers and for 40% of male breast cancers in Iceland. If expressed, the mutant gene would encode a protein consisting of the first 256 amino acids of the BRCA2 protein. The purpose of this study was to determine whether this mutant protein is produced in heterozygous individuals and, if so, what might be the functional consequences of mutant protein production. Methods:The presence of BRCA2 999del5 transcripts in fibroblasts from heterozygous individuals was assayed by cDNA synthesis and sequencing. The potential protein-coding portion of BRCA2 999del5 was cloned into the pIND(SP1)/ V5-His vector and expressed in COS7 cells. The presence of the mutant protein in cell lysates from heterozygous fibroblasts and from COS7 cells was tested by a number of methods including immunoprecipitation, affinity purification with nickelcoated agarose beads, Western blotting and ELISA, using antibodies to the N-terminal end of BRCA2, antiserum specific for the 16 nonrelevant amino acids at the carboxyl end and antibodies to fusion partners of recombinant proteins. Results:The frequency of the BRCA2 999del5 transcript in heterozygous fibroblasts was about one-fifth of the wild-type transcript; however, no mutant protein could be detected. Overexpression of BRCA2 999del5 mRNA in COS7 cells failed to produce a mutant protein unless degradation by proteasomes was blocked. Conclusion:Our results show that the protein product of BRCA2 999del5 is extremely unstable. Therefore, an increase in breast cancer risk in BRCA2 999del5 carriers is due to haploinsufficiency at the BRCA2 locus.
The success of genome-wide association studies (GWAS) in identifying common, low-penetrance variant-cancer associations for the past decade is undisputed. However, discovering additional high-penetrance cancer mutations in unknown cancer predisposing genes requires detection of variant-cancer association of ultra-rare coding variants. Consequently, large-scale next-generation sequence data with associated phenotype information are needed. Here, we used genotype data on 166,281 Icelanders, of which, 49,708 were whole-genome sequenced and 408,595 individuals from the UK Biobank, of which, 41,147 were whole-exome sequenced, to test for association between loss-of-function burden in autosomal genes and basal cell carcinoma (BCC), the most common cancer in Caucasians. A total of 25,205 BCC cases and 683,058 controls were tested. Rare germline loss-of-function variants in PTPN14 conferred substantial risks of BCC (OR, 8.0; P = 1.9 × 10−12), with a quarter of carriers getting BCC before age 70 and over half in their lifetime. Furthermore, common variants at the PTPN14 locus were associated with BCC, suggesting PTPN14 as a new, high-impact BCC predisposition gene. A follow-up investigation of 24 cancers and three benign tumor types showed that PTPN14 loss-of-function variants are associated with high risk of cervical cancer (OR, 12.7, P = 1.6 × 10−4) and low age at diagnosis. Our findings, using power-increasing methods with high-quality rare variant genotypes, highlight future prospects for new discoveries on carcinogenesis. Significance: This study identifies the tumor-suppressor gene PTPN14 as a high-impact BCC predisposition gene and indicates that inactivation of PTPN14 by germline sequence variants may also lead to increased risk of cervical cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.