In this work we study the semi-supervised framework of confidence set classification with controlled expected size in minimax settings. We obtain semi-supervised minimax rates of convergence under the margin assumption and a Hölder condition on the regression function. Besides, we show that if no further assumptions are made, there is no supervised method that outperforms the semi-supervised estimator proposed in this work. We establish that the best achievable rate for any supervised method is n −1/2 , even if the margin assumption is extremely favorable. On the contrary, semisupervised estimators can achieve faster rates of convergence provided that sufficiently many unlabeled samples are available. We additionally perform numerical evaluation of the proposed algorithms empirically confirming our theoretical findings.
A well-know drawback of 1-penalized estimators is the systematic shrinkage of the large coefficients towards zero. A simple remedy is to treat Lasso as a model-selection procedure and to perform a second refitting step on the selected support. In this work we formalize the notion of refitting and provide oracle bounds for arbitrary refitting procedures of the Lasso solution. One of the most widely used refitting techniques which is based on Least-Squares may bring a problem of interpretability, since the signs of the refitted estimator might be flipped with respect to the original estimator. This problem arises from the fact that the Least-Squares refitting considers only the support of the Lasso solution, avoiding any information about signs or amplitudes. To this end we define a sign consistent refitting as an arbitrary refitting procedure, preserving the signs of the first step Lasso solution and provide Oracle inequalities for such estimators. Finally, we consider special refitting strategies: Bregman Lasso and Boosted Lasso. Bregman Lasso has a fruitful property to converge to the Sign-Least-Squares refitting (Least-Squares with sign constraints), which provides with greater interpretability. We additionally study the Bregman Lasso refitting in the case of orthogonal design, providing with simple intuition behind the proposed method. Boosted Lasso, in contrast, considers information about magnitudes of the first Lasso step and allows to develop better oracle rates for prediction. Finally, we conduct an extensive numerical study to show advantages of one approach over others in different synthetic and semi-real scenarios.
Multi-class classification problem is among the most popular and well-studied statistical frameworks. Modern multi-class datasets can be extremely ambiguous and single-output predictions fail to deliver satisfactory performance. By allowing predictors to predict a set of label candidates, set-valued classification offers a natural way to deal with this ambiguity. Several formulations of set-valued classification are available in the literature and each of them leads to different prediction strategies. The present survey aims to review popular formulations using a unified statistical framework. The proposed framework encompasses previously considered and leads to new formulations as well as it allows to understand underlying trade-offs of each formulation. We provide infinite sample optimal set-valued classification strategies and review a general plug-in principle to construct data-driven algorithms. The exposition is supported by examples and pointers to both theoretical and practical contributions. Finally, we provide experiments on real-world datasets comparing these approaches in practice and providing general practical guidelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.