High resolution electroluminescence (EL) images captured in the infrared spectrum allow to visually and non-destructively inspect the quality of photovoltaic (PV) modules. Currently, however, such a visual inspection requires trained experts to discern different kinds of defects, which is time-consuming and expensive. Automated segmentation of cells is therefore a key step in automating the visual inspection workflow. In this work, we propose a robust automated segmentation method for extraction of individual solar cells from EL images of PV modules. This enables controlled studies on large amounts of data to understanding the effects of module degradation over time—a process not yet fully understood. The proposed method infers in several steps a high-level solar module representation from low-level ridge edge features. An important step in the algorithm is to formulate the segmentation problem in terms of lens calibration by exploiting the plumbline constraint. We evaluate our method on a dataset of various solar modules types containing a total of 408 solar cells with various defects. Our method robustly solves this task with a median weighted Jaccard index of $$94.47\%$$ 94.47 % and an $$F_1$$ F 1 score of $$97.62\%$$ 97.62 % , both indicating a high sensitivity and a high similarity between automatically segmented and ground truth solar cell masks.
Electroluminescence (EL) imaging is a powerful and established technique for assessing the quality of photovoltaic (PV) modules, which consist of many electrically connected solar cells arranged in a grid. The analysis of imperfect real-world images requires reliable methods for preprocessing, detection and extraction of the cells. We propose several methods for those tasks, which, however, can be modified to related imaging problems where similar geometric objects need to be detected accurately. Allowing for images taken under difficult outdoor conditions, we present methods to correct for rotation and perspective distortions. The next important step is the extraction of the solar cells of a PV module, for instance to pass them to a procedure to detect and analyze defects on their surface. We propose a method based on specialized Hough transforms, which allows to extract the cells even when the module is surrounded by disturbing background and a fast method based on cumulated sums (CUSUM) change detection to extract the cell area of single-cell mini-module, where the correction of perspective distortion is implicitly done. The methods are highly automatized to allow for big data analyses. Their application to a large database of EL images substantiates that the methods work reliably on a large scale for real-world images. Simulations show that the approach achieves high accuracy, reliability and robustness. This even holds for low contrast images as evaluated by comparing the simulated accuracy for a low and a high contrast image.
Herein, a benchmark dataset for vehicle‐integrated photovoltaics irradiance modeling is proposed. The vehicle trip data consist of trips in the state of North Rhine‐Westphalia in Germany starting from March 2021, which amounts to more than 73 h and a total distance of 3422 km. The sensor box is equipped with GPS, a magnetic compass, acoustic wind, and irradiance sensors and records at a rate of 0.58 Hz. The irradiance sensors are positioned on four sides of the vehicle: roof, left, right, and rear. In addition to the data, a model that uses high‐resolution aerial‐measured topography (LIDAR) and low‐resolution satellite‐based weather data to forecast the effective irradiation of modules mounted on a moving vehicle is discussed. The utility of the simulation approach is demonstrated by computing irradiation over long periods for various driving profiles and comparing results with the collected measurement data. The data are published as a challenge, and the developed software is available in open source.
We study a stratified multisite cluster-sampling panel time series approach in order to analyse and evaluate the quality and reliability of produced items, motivated by the problem to sample and analyse multisite outdoor measurements from photovoltaic systems. The specific stratified sampling in spatial clusters reduces sampling costs and allows for heterogeneity as well as for the analysis of spatial correlations due to defects and damages that tend to occur in clusters. The analysis is based on weighted least squares using data-dependent weights. We show that this does not affect consistency and asymptotic normality of the least squares estimator under the proposed sampling design under general conditions. The estimation of the relevant variance-covariance matrices is discussed in detail for various models including nested designs and random effects. The strata corresponding to damages or manufacturers are modelled via a quality feature by means of a threshold approach. The analysis of outdoor electroluminescence images shows that spatial correlations and local clusters may arise in such photovoltaic data. Further, relevant statistics such as the mean pixel intensity cannot be assumed to follow a Gaussian law. We investigate the proposed inferential tools in detail by simulations in order to assess the influence of spatial cluster correlations and serial correlations on the test's size and power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.