Neural network quantization enables the deployment of large models on resource-constrained devices. Current post-training quantization methods fall short in terms of accuracy for INT4 (or lower) but provide reasonable accuracy for INT8 (or above). In this work, we study the effect of quantization on the structure of the loss landscape. We show that the structure is flat and separable for mild quantization, enabling straightforward post-training quantization methods to achieve good results. We show that with more aggressive quantization, the loss landscape becomes highly non-separable with steep curvature, making the selection of quantization parameters more challenging. Armed with this understanding, we design a method that quantizes the layer parameters jointly, enabling significant accuracy improvement over current post-training quantization methods. Reference implementation is available at https:// github. com/ ynahs han/ nn-quant izati on-pytor ch/ tree/ master/ lapq.
We present a novel method for neural network quantization. Our method, named UNIQ , emulates a non-uniform k -quantile quantizer and adapts the model to perform well with quantized weights by injecting noise to the weights at training time. As a by-product of injecting noise to weights, we find that activations can also be quantized to as low as 8-bit with only a minor accuracy degradation. Our non-uniform quantization approach provides a novel alternative to the existing uniform quantization techniques for neural networks. We further propose a novel complexity metric of number of bit operations performed (BOPs), and we show that this metric has a linear relation with logic utilization and power. We suggest evaluating the trade-off of accuracy vs. complexity (BOPs). The proposed method, when evaluated on ResNet18/34/50 and MobileNet on ImageNet, outperforms the prior state of the art both in the low-complexity regime and the high accuracy regime. We demonstrate the practical applicability of this approach, by implementing our non-uniformly quantized CNN on FPGA.
Neural network quantization enables the deployment of large models on resource-constrained devices. Current posttraining quantization methods fall short in terms of accuracy for INT4 (or lower) but provide reasonable accuracy for INT8 (or above). In this work, we study the effect of quantization on the structure of the loss landscape. We show that the structure is flat and separable for mild quantization, enabling straightforward post-training quantization methods to achieve good results. On the other hand, we show that with more aggressive quantization, the loss landscape becomes highly non-separable with sharp minima points, making the selection of quantization parameters more challenging. Armed with this understanding, we design a method that quantizes the layer parameters jointly, enabling significant accuracy improvement over current post-training quantization methods. Reference implementation accompanies the paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.