Short nuclear regulatory RNAs play a key role in the main stages of maturation of the precursors of the major RNA species. Small nuclear RNAs (snRNAs) form the core of the spliceosome and are responsible for the splicing of pre-mRNA molecules. Small nucleolar RNAs (snoRNAs) direct post-transcriptional modification of pre-rRNAs. A promising strategy for the development of non-coding RNA (ncRNAs) mimicking molecules is the introduction of modified nucleotides, which are normally present in natural ncRNAs, into the structure of synthetic RNAs. We have created a set of snoRNAs and snRNA analogs and studied the effect of base modifications, specifically, pseudouridine (Ψ) and 5-methylcytidine (m5C), on the immune-stimulating and cytotoxic properties of these RNAs. Here, we performed a whole-transcriptome study of the influence of synthetic snoRNA analogs with various modifications on gene expression in human cells. Moreover, we confirmed the role of PKR in the recognition of snoRNA and snRNA analogs using the short hairpin RNA (shRNA) technique. We believe that the data obtained will contribute to the understanding of the role of nucleotide modification in ncRNA functions, and can be useful for creating the agents for gene regulation based on the structure of natural snoRNAs and snRNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.