Vaccination of the population is one of the most effective countermeasures in responding to the pandemic caused by novel coronavirus infection. Therefore, scientists all over the world have been working to develop effective and safe vaccines. We have developed a synthetic peptide vaccine, EpiVacCorona, against novel SARS-CoV-2 coronavirus, which is a suspension for intramuscular administration containing a composition of chemically synthesized peptide immunogens of the S protein of SARS-CoV-2 coronavirus conjugated to a carrier protein and adsorbed on aluminum hydroxide. Phase I–II clinical trials of the vaccine have started that consist of two stages: Stage 1 is an open study of the safety, reactogenicity, and immunological activity of the vaccine with the involvement of 14 volunteers aged 18–30 years; Stage 2 is a single blind, comparative, randomized placebo-controlled study with the involvement of 86 volunteers. The study involved volunteers aged 18–60 years; the vaccine was injected intramuscularly twice, spaced 21 days apart between injections. All local reactions in response to vaccine administration were mild, such as a short-term pain at the injection site. There were no signs of development of local or systemic adverse reactions. The two-dose vaccination scheme induced the production of antibodies, specific to the antigens that make up the vaccine, in 100% of the volunteers. Seroconversion with a neutralizing antibody titer ≥ 1:20 was reported in 100% of the volunteers 21 days following the second immunization dose. No seroconversion was reported in the groups of volunteers vaccinated with a placebo. The peptide-based EpiVacCorona Vaccine has low reactogenicity and is a safe, immunogenic product. Clinical Trials Identifier: NCT04527575.
Background: In 2020, the pandemic caused by novel coronavirus infection has become one of the most critical global health challenges during the past century. The lack of a vaccine, as the most effective way to control the novel infection, has prompted the development of a large number of preventive products by the scientific community. We have developed a candidate vaccine (EpiVacCorona) against novel coronavirus infection caused by SARS-CoV-2 that is based on chemically synthesized peptides conjugated to a carrier protein and adsorbed on aluminum hydroxide and studied the specific activity of the developed vaccine.
Aims: Study of the immunogenicity and protectivity of the peptide candidate vaccine EpiVacCorona.
Materials and methods: the work was performed using standard molecular biological, virological and histological methods.
Results: It was demonstrated that EpiVacCorona, when administered twice, spaced 14 days apart, to hamsters, ferrets, and non-human primates (African green monkeys, rhesus macaques) at a dose of 260 g, which is equal to one inoculation dose for humans, induces virus-specific antibodies in 100% of the animals. Experiments in hamsters showed this vaccine to be associated with the dose-dependent immunogenicity. The vaccine was shown to accelerate the elimination of the virus from the upper respiratory tract in ferrets and prevent the development of pneumonia in hamsters and non-human primates following a respiratory challenge with novel coronavirus.
Conclusions: The results of a preclinical specific activity study indicate that the use of EpiVacCorona has the potential for human vaccination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.