Genesis of the oldest continental crust retains a marked trace in the Earth's evolution over its 4.5 Ga history. Despite ample isotope data on the role of the continental crust in the Earth's evolution, there has been much debate on the origin of grey gneisses and tonalite-trondhjemite-granodiorites (TTG). Precise U-Pb (ID-TIMS) and SHRIMP data on single zircon for paragneisses and TTG (3158.2 ± 8.2 Ma) have indicated the Central-Kola and Belomorian (White Sea) megablocks of the Fennoscandian Shield to be 3.16 Ga and 3.70 Ga, respectively. The newly obtained ages of zircon from these megablocks indicate the origin of the discrete continental crust to be 3.16 and 3.70 Ga. It is close to the Nordsim zircon data on the Siurua TTG (Finland), which are 3.45 and 3.73 Ga in the core. The new summarized data on the Earth's oldest rocks (basement and continental crust) indicate the younger age of the rocks in the Fennoscandian Shield as compared to those in Australia (Kronendonk et al., 2019).
Baddeleyite is a significant mineral successfully applied in the U-Pb geochronology for the precise dating of mafic rocks from layered intrusions with the platinum group element (PGE) and Cu-Ni mineralization. The Fennoscandian Shield hosts several layered Pt-Pd, Co-Cr-Ni, and Ti-V occurrences in the Northern (Karelian) and Southern (Karelian-Finnish) belts. The aim of this study is to estimate the content and distribution of rare earth elements (REE) in baddeleyite and to calculate temperatures (Т, ̊С) of the U-Pb system closure and baddeleyite crystallization compared to zircon from Cu-Ni and Pt-Pd deposits in the north-eastern Fennoscandian Shield. For the first time, baddeleyite crystals from Cu-Ni (Monchepluton) and Pt-Pd (Monchetundra) reefs of the Monchegorsk ore area have been studied in situ by the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to measure the U-Pb age of formation and the REE content.