Pancreatic β cells are mostly post-mitotic, but it is unclear what locks them in this state. Perturbations including uncontrolled hyperglycemia can drive β cells into more pliable states with reduced cellular insulin levels, increased β cell proliferation, and hormone mis-expression, but it is unknown whether reduced insulin production itself plays a role. Here, we define the effects of ∼50% reduced insulin production in Ins1(-/-):Ins2(f/f):Pdx1Cre(ERT):mTmG mice prior to robust hyperglycemia. Transcriptome, proteome, and network analysis revealed alleviation of chronic endoplasmic reticulum (ER) stress, indicated by reduced Ddit3, Trib3, and Atf4 expression; reduced Xbp1 splicing; and reduced phospho-eIF2α. This state was associated with hyper-phosphorylation of Akt, which is negatively regulated by Trib3, and with cyclinD1 upregulation. Remarkably, β cell proliferation was increased 2-fold after reduced insulin production independently of hyperglycemia. Eventually, recombined cells mis-expressed glucagon in the hyperglycemic state. We conclude that the normally high rate of insulin production suppresses β cell proliferation in a cell-autonomous manner.
Aims/hypothesis Endoplasmic reticulum (ER) stress has been recognised as a common pathway in the development of obesity-associated insulin resistance. Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin signalling and is localised on the ER membrane. The aim of the study was to investigate the cross-talk between ER stress and PTP1B. Methods Leptin-deficient obese (ob/ob), Ptp1b (also known as Ptpn1) knockout and C57BL/6J mice were subjected to a high-fat or normal-chow diet for 20 weeks. ER stress was induced in cultured myotubes by treatment with tunicamycin. Immunohistochemistry and western blotting were used to assess proteins involved in the ER stress response. Myotube glucose uptake was determined by measuring 2-deoxy[3H]glucose incorporation. Results A high-fat diet induced ER stress and PTP1B expression in the muscle tissue of mice and these responses were attenuated by treatment with the ER chaperone tauroursodeoxycholic acid (TUDCA). Cultured myotubes exhibited increased levels of PTP1B in response to tunicamycin treatment. Silencing of Ptp1b with small interfering RNA (siRNA) or overexpression of Ptp1b with adenovirus construct failed to alter the levels of ER stress. Ptp1b knockout mice did not differ from the wild-type mice in the extent of tunicamycin-induced upregulation of glucose-regulated protein-78. However, tunicamycin-induced phosphorylation of eukaryotic initiation factor 2α and c-Jun NH2-terminal kinase-2 were significantly attenuated in the Ptp1b knockout mice. Treatment with TUDCA or silencing of PTP1B reversed tunicamycin-induced blunted myotube glucose uptake. Conclusions/interpretation Our data suggest that PTP1B is activated by ER stress and is required for full-range activation of ER stress pathways in mediating insulin resistance in the skeletal muscle.
Obesity-induced endoplasmic reticulum (ER) stress has been proposed as an important pathway in the development of insulin resistance. Protein-tyrosine phosphatase 1B (PTP1B) is a negative regulator of insulin signaling and is tethered to the ER-membrane. The aim of the study was to determine the mechanisms involved in the crosstalk between ER-stress and PTP1B. PTP1B whole body knockout and C57BL/6J mice were subjected to a high-fat or normal chow-diet for 20 weeks. High-fat diet feeding induced body weight gain, increased adiposity, systemic glucose intolerance, and hepatic steatosis were attenuated by PTP1B deletion. High-fat diet- fed PTP1B knockout mice also exhibited improved glucose uptake measured using [3H]-2-deoxy-glucose incorporation assay and Akt phosphorylation in the skeletal muscle tissue, compared to their wild-type control mice which received similar diet. High-fat diet-induced upregulation of glucose-regulated protein-78, phosphorylation of eukaryotic initiation factor 2α and c-Jun NH2-terminal kinase-2 were significantly attenuated in the PTP1B knockout mice. Mice lacking PTP1B showed decreased expression of the autophagy related protein p62 and the unfolded protein response adaptor protein NCK1 (non-catalytic region of tyrosine kinase). Treatment of C2C12 myotubes with the ER-stressor tunicamycin resulted in the accumulation of reactive oxygen species (ROS), leading to the activation of protein expression of PTP1B. Furthermore, tunicamycin-induced ROS production activated nuclear translocation of NFκB p65 and was required for ER stress-mediated expression of PTP1B. Our data suggest that PTP1B is induced by ER stress via the activation of the ROS-NFκB axis which is causes unfolded protein response and mediates insulin resistance in the skeletal muscle under obese condition.
1. Isoliquiritigenin (ISL) is a simple chalcone-type flavonoid derived from liquorice compounds. It has been reported to have anti-oxidative and antitumour activities. The aim of the present study was to investigate the antitumour effect of ISL on prostate cancer cells and to explore the possible signalling mechanisms involved. 2. Cell viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The fluorescent probe 2',7'-dichlorofluorescein diacetate (H(2)DCF-DA) was used to measure intracellular levels of reactive oxygen species (ROS). Mitochondrial membrane potential (Psi(m)) was measured using the mitochondrial probe 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolylcarbocyanine iodide (JC-1). 3. Isoliquiritigenin treatment (10-100 micromol/L for 24 h) markedly inhibited the proliferation of both C4-2 and LNCaP prostate cancer cells in a dose-dependent manner. Intriguingly, ISL treatment (10-100 micromol/L for 24 h) had no effect on the viability of IEC-6 normal epithelial cells. Treatment of C4-2 and IEC-6 cells with 87.0 micromol/L ISL significantly decreased ROS levels and the Psi(m) of C4-2 cells, but had no effect on either parameter in IEC-6 cells. Furthermore, AMP-activated protein kinase (AMPK) and extracellular-signal regulated kinase (ERK) levels were three to fourfold higher in IEC-6 cells than in C4-2 cells (P < 0.05). 4. The results of the present study suggest that ISL, a natural anti-oxidant, selectively inhibits the proliferation of prostate cancer C4-2 cells, which may be attributed, in part, to defective AMPK and ERK signalling pathways in C4-2 compared with IEC-6 cells.
Reactive oxygen species (ROS) have been reported to affect neural stem cell self-renewal and therefore may be important for normal development and may influence neurodegenerative processes when ROS activity is elevated. To determine if increasing production of superoxide, via activation of NADPH oxidase (Nox), increases neural stem cell proliferation, 100 n
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.