This paper describes the SemEval 2016 shared task on Aspect Based Sentiment Analysis (ABSA), a continuation of the respective tasks of 2014 and 2015. In its third year, the task provided 19 training and 20 testing datasets for 8 languages and 7 domains, as well as a common evaluation procedure. From these datasets, 25 were for sentence-level and 14 for text-level ABSA; the latter was introduced for the first time as a subtask in SemEval. The task attracted 245 submissions from 29 teams.
Currently, there are more than a dozen Russian-language corpora for sentiment analysis, differing in the source of the texts, domain, size, number and ratio of sentiment classes, and annotation method. This work examines publicly available Russian-language corpora, presents their qualitative and quantitative characteristics, which make it possible to get an idea of the current landscape of the corpora for sentiment analysis. The ranking of corpora by annotation quality is proposed, which can be useful when choosing corpora for training and testing. The influence of the training dataset on the performance of sentiment analysis is investigated based on the use of the deep neural network model BERT. The experiments with review corpora allow us to conclude that on average the quality of models increases with an increase in the number of training corpora. For the first time, quality scores were obtained for the corpus of reviews of ROMIP seminars based on the BERT model. Also, the study proposes the task of the building a universal model for sentiment analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.