Rotavirus infectivity is dependent on the proteolytic cleavage of the VP4 spike protein into VP8* and VP5* proteins. Proteolytically activated virus, as well as expressed VP5*, permeabilizes membranes, suggesting that cleavage exposes a membrane-interactive domain of VP5* which effects rapid viral entry. The VP5* protein contains a single long hydrophobic domain (VP5*-HD, residues 385 to 404) at an internal site. In order to address the role of the VP5*-HD in permeabilizing cellular membranes, we analyzed the entry of o-nitrophenyl--D-galactopyranoside (ONPG) into cells induced to express VP5* or mutated VP5* polypeptides. Following IPTG (isopropyl--D-thiogalactopyranoside) induction, VP5* and VP5* truncations containing the VP5*-HD permeabilized cells to the entry and cleavage of ONPG, while VP8* and control proteins had no effect on cellular permeability. Expression of VP5* deletions containing residues 265 to 474 or 265 to 404 permeabilized cells; however, C-terminal truncations which remove the conserved GGA (residues 399 to 401) within the HD abolished membrane permeability. Site-directed mutagenesis of the VP5-HD further demonstrated a requirement for residues within the HD for VP5*-induced membrane permeability. Functional analysis of mutant VP5*s indicate that conserved glycines within the HD are required and suggest that a random coiled structure rather than the strictly hydrophobic character of the domain is required for permeability. Expressed VP5* did not alter bacterial growth kinetics or lyse bacteria following induction. Instead, VP5*-mediated size-selective membrane permeability, releasing 376-Da carboxyfluorescein but not 4-kDa fluorescein isothiocyanate-dextran from preloaded liposomes. These findings suggest that the fundamental role for VP5* in the rotavirus entry process may be to expose triple-layered particles to low [Ca] i , which uncoats the virus, rather than to effect the detergent-like lysis of early endosomal membranes.
Proteolytic cleavage of the VP4 outer capsid spike protein into VP8* and VP5* proteins is required for rotavirus infectivity and for rotavirus-induced membrane permeability. In this study we addressed the function of the VP5* cleavage fragment in permeabilizing membranes. Expressed VP5* and truncated VP5* proteins were purified by nickel affinity chromatography and assayed for their ability to permeabilize large unilamellar vesicles (LUVs) preloaded with carboxyfluorescein (CF). VP5* and VP5* truncations, but not VP4 or VP8*, permeabilized LUVs as measured by fluorescence dequenching of released CF. Similar to virus-induced CF release, VP5*-induced CF release was concentration and temperature dependent, with a pH optimum of 7.35 at 37°C, but independent of the presence of divalent cations or cholesterol. VP5*-induced permeability was completely inhibited by VP5*-specific neutralizing monoclonal antibodies (2G4, M2, or M7) which recognize conformational epitopes on VP5* but was not inhibited by VP8*-specific neutralizing antibodies. In addition, N-terminal and C-terminal VP5* truncations including residues 265 to 474 are capable of permeabilizing LUVs. These findings demonstrate that VP5* permeabilizes membranes in the absence of other rotavirus proteins and that membrane-permeabilizing VP5* truncations contain the putative fusion region within predicted virion surface domains. The ability of recombinant expressed VP5* to permeabilize membranes should permit us to functionally define requirements for VP5*-membrane interactions. These findings indicate that VP5* is a specific membrane-permeabilizing capsid protein which is likely to play a role in the cellular entry of rotaviruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.