Abstract. We study the problem of evolution for Knowledge Bases (KBs) expressed in Description Logics (DLs) of the DL-Lite family. DL-Lite is at the basis of OWL 2 QL, one of the tractable fragments of OWL 2, the recently proposed revision of the Web Ontology Language. We propose some fundamental principles that KB evolution should respect. We review known model and formula-based approaches for evolution of propositional theories. We exhibit limitations of a number of model-based approaches: besides the fact that they are either not expressible in DL-Lite or hard to compute, they intrinsically ignore the structural properties of KBs, which leads to undesired properties of KBs resulting from such an evolution. We also examine proposals on update and revision of DL KBs that adopt the model-based approaches and discuss their drawbacks. We show that known formula-based approaches are also not appropriate for DL-Lite evolution, either due to high complexity of computation, or because the result of such an action of evolution is not expressible in DL-Lite. Building upon the insights gained, we propose two novel formula-based approaches that respect our principles and for which evolution is expressible in DL-Lite. For our approaches we also developed polynomial time algorithms to compute evolution of DL-Lite KBs.
Knowledge graphs such as Yago and Freebase have become a powerful asset for enhancing search, and are being intensively used in both academia in industry. Many existing knowledge graphs are either available as Linked Open Data, or they can be exported as RDF datasets enhanced with background knowledge in the form of an OWL 2 ontology. Faceted search is the de facto approach for exploratory search in many online applications, and has been recently proposed as a suitable paradigm for querying RDF repositories. In this paper, we provide rigorous theoretical underpinnings for faceted search in the context of RDFbased knowledge graphs enhanced with OWL 2 ontologies. We identify well-defined fragments of SPARQL that can be naturally captured using faceted search as a query paradigm, and establish the computational complexity of answering such queries. We also study the problem of updating faceted interfaces, which is critical for guiding users in the formulation of meaningful queries during exploratory search. We have implemented our approach in a fully-fledged faceted search system, SemFacet, which we have evaluated over the Yago knowledge graph.
We present a description and analysis of the data access challenge in the Siemens Energy. We advocate for Ontology Based Data Access (OBDA) as a suitable Semantic Web driven technology to address the challenge. We derive requirements for applying OBDA in Siemens, review existing OBDA systems and discuss their limitations with respect to the Siemens requirements. We then introduce the Optique platform as a suitable OBDA solution for Siemens. Finally, we describe our preliminary installation and evaluation of the platform in Siemens. † The research was supported by the FP7 grant Optique (n. 318338).
An important application of semantic technologies in industry has been the formalisation of information models using OWL 2 ontologies and the use of RDF for storing and exchanging application data. Moreover, legacy data can be virtualised as RDF using ontologies following the ontology-based data access (OBDA) approach. In all these applications, it is important to provide domain experts with query formulation tools for expressing their information needs in terms of queries over ontologies. In this work, we present such a tool, OptiqueVQS, which is designed based on our experience with OBDA applications in Statoil and Siemens and on best HCI practices for interdisciplinary engineering environments. OptiqueVQS implements a number of unique techniques distinguishing it from analogous query formulation systems. In particular, it exploits ontology projection techniques to enable graph-based navigation over an ontology during query construction. Secondly, while OptiqueVQS is primarily ontology driven, it exploits sampled data to enhance selection of data values for some data attributes. Finally, OptiqueVQS is built on well-grounded requirements, design rationale, and quality attributes. We evaluated OptiqueVQS with both domain experts and casual users and qualitatively compared our system against prominent visual systems for ontology-driven query formulation and exploration of semantic data. OptiqueVQS is available online and can be downloaded together with an example OBDA scenario.
Abstract. Ontology Based Data Access (OBDA) is a prominent approach to query databases which uses an ontology to expose data in a conceptually clear manner by abstracting away from the technical schema-level details of the underlying data. The ontology is 'connected' to the data via mappings that allow to automatically translate queries posed over the ontology into data-level queries that can be executed by the underlying database management system. Despite a lot of attention from the research community, there are still few instances of real world industrial use of OBDA systems. In this work we present data access challenges in the data-intensive petroleum company Statoil and our experience in addressing these challenges with OBDA technology. In particular, we have developed a deployment module to create ontologies and mappings from relational databases in a semi-automatic fashion, and a query processing module to perform and optimise the process of translating ontological queries into data queries and their execution. Our modules have been successfully deployed and evaluated for an OBDA solution in Statoil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.