Laser ablation in liquid-phase (LAL) has been developed since the 1990s, but the interest in laser synthesis of colloids has emerged in the last decade due to a significant improvement in the production rate, proven comparative advantages in biomedical and catalysis applications, and recent commercialization. However, the method relies on highly transient phenomena, so that the fundamental understanding lacks behind the LAL synthesis refinement research. The complexity of the physics and chemistry involved has led to experimental and theoretical investigations that attempt to provide a basic description of the underlying processes but face the challenge of temporal and spatial resolution as well as non-equilibrium conditions. It appears that the processes occurring at the early time scales, ranging from femtoseconds to several microseconds are critical in the definition of the final product. The review is mainly dedicated to the comprehensive description of the processes occurring at early time scales, which include the description of laser-matter interaction for ultrashort and short laser pulses, plasma formation processes as well as comparison of the measured plasma parameters at these time scales, and subsequent description of the cavitation bubble dynamics. Furthermore, the plasma and cavitation bubble chemistry are addressed, and their impact on the nanoparticle formation is emphasized.
We report on the first experimental observation of a concentric-ring pattern in a short planar dielectric barrier gas-discharge system and study its spatiotemporal behavior. While increasing the gas pressure the destabilization of the rings into a filamentary structure is observed. The charge carriers deposited on the dielectric electrodes determine the spatiotemporal behavior of the pattern.
In this manuscript, a new approach in surface plasmon resonance microscopy is presented. The method provides optical real-time detection of single nanoparticles on surfaces. The potential of the method is demonstrated recording spherical dielectric particles as small as 40 nm in diameter and single HIV virus-like particles having diameters of ∼100 nm both immobilized on functionalized surfaces. The surface plasmon resonance signal in the binding spots was found to be almost linearly proportional to the size of the particles and, therefore, surpasses the intensity of Mie scattering on spherical particle (dependence ∼ r −6 ) by orders of magnitude for small objects. The physical reason leading to this strong effect is discussed.
The present review reflects the importance of dielectric barrier discharges in analytical chemistry. Special about this discharge is-and in contrast to usual discharges with direct current-that the plasma is separated from one or two electrodes by a dielectric barrier. This gives rise to two main features of the dielectric barrier discharges; it can serve as dissociation and excitation device and as ionization mechanism, respectively. The article portrays the various application fields for dielectric barrier discharges in analytical chemistry, for example the use for elemental detection with optical spectrometry or as ionization source for mass spectrometry. Besides the introduction of different kinds of dielectric barrier discharges used for analytical chemistry from the literature, a clear and concise classification of dielectric barrier discharges into capacitively coupled discharges is provided followed by an overview about the characteristics of a dielectric barrier discharge concerning discharge properties and the ignition mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.