This paper presents a structured analysis in the area of measurement while drilling (MWD) data processing and verification methods, as well as describes the main nuances and certain specifics of “clean” data selection in order to build a “parent” training database for subsequent use in machine learning algorithms. The main purpose of the authors is to create a trainable machine learning algorithm, which, based on the available “clean” input data associated with specific conditions, could correlate, process and select parameters obtained from the drilling rig and use them for further estimation of various rock characteristics, prediction of optimal drilling and blasting parameters, and blasting results. The paper is a continuation of a series of publications devoted to the prospects of using MWD technology for the quality management of drilling and blasting operations at mining enterprises.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.