In recent years, a lot of IoT devices, wireless sensors, and smart things contain information that must be transmitted to the server for further processing. Due to the distance between devices, battery power, and the possibility of sudden device failure, the network that connects the devices must be scalable, energy efficient, and flexible. Particular attention must be paid to the protection of the transmitted data. The Bluetooth mesh was chosen as such a network. This network is built on top of Bluetooth Low-Energy devices, which are widespread in the market and whose radio modules are available from several manufacturers. This paper presents an overview of security mechanisms for the Bluetooth mesh network. This network provides encryption at two layers: network and upper transport layers, which increases the level of data security. The network uses sequence numbers for each message to protect against replay attacks. The introduction of devices into the network is provided with an encryption key, and the out-of-band (OOB) mechanism is also supported. At the moment, a comparison has been made between attacks and defense mechanisms that overlap these attacks. The article also suggested ways to improve network resiliency.
The growth of Internet of Things devices has shown the need to advance the information security and more specifically the development and operation of microchips, as modern information systems are built around the latter. This article presents the lifecycle of secure chips used as the Root of Trust of information systems. The main stages of the life cycle of protected chips are described, namely life cycle models during development and operation by the end user.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.