Summary Background TF is highly expressed in cancerous and atherosclerotic lesions. Monocyte recruitment is a hallmark of disease progression in these pathological states. Objective To examine the role of integrin signaling in TF-dependent recruitment of monocytes by endothelial cells. Methods The expression of flTF and asTF in cervical cancer and atherosclerotic lesions was examined. Biologic effects of the exposure of primary microvascular endothelial cells (MVEC) to truncated flTF ectodomain (LZ-TF) and recombinant asTF were assessed. Results flTF and asTF exhibited nearly identical expression patterns in cancer lesions and lipid-rich plaques. Tumor lesions as well as stromal CD68+ monocytes/macrophages expressed both TF forms. Primary MVEC rapidly adhered to asTF and LZ-TF, and this was completely blocked by anti-β1 integrin antibody. asTF- and LZ-TF-treatment of MVEC promoted adhesion of peripheral blood mononuclear cells (PBMC) under orbital shear conditions and under laminar flow; asTF-elicited adhesion was more pronounced than that elicited by LZ-TF. Expression profiling and western blotting revealed a broad activation of cell adhesion molecules (CAMs) in MVEC following asTF treatment including E-selectin, ICAM-1, and VCAM-1. In transwell assays, asTF potentiated PMBC migration through MVEC monolayers by ~3 fold under MCP-1 gradient. Conclusions TF splice variants ligate β1 integrins on MVEC, which induces the expression of CAMs in MVEC and leads to monocyte adhesion and transendothelial migration. asTF appears more potent than flTF in eliciting these effects. Our findings underscore the pathophysiologic significance of non-proteolytic, integrin-mediated signaling by the two naturally occurring TF variants in cancer and atherosclerosis.
SUMMARY The intracellular microbial nucleic acid sensors, TLR3 and STING, recognize pathogen molecules and signal to activate the interferon pathway. The TIR-domain containing protein TRIF is the sole adaptor of TLR3. Here we report an essential role for TRIF in STING signaling: various activators of STING could not induce genes in the absence of TRIF. TRIF and STING interacted directly, through their carboxyl terminal domains, to promote STING dimerization, intermembrane translocation and signaling. Herpes simplex virus (HSV), which triggers the STING signaling pathway and is controlled by it, replicated more efficiently in the absence of TRIF and HSV-infected TRIF−/− mice displayed pronounced pathology. Our results indicate that defective STING signaling may be responsible for the observed genetic association between TRIF mutations and Herpes Simplex Encephalitis in patients.
Innate immunity is the first line of defense against microbial insult. The transcription factor, IRF3, is needed by mammalian cells to mount innate immune responses against many microbes, especially viruses. IRF3 remains inactive in the cytoplasm of uninfected cells; upon virus infection, it gets phosphorylated and then translocates to the nucleus, where it binds to the promoters of antiviral genes and induces their expression. Such genes include type I interferons (IFNs) as well as Interferon Stimulated Genes (ISGs). IRF3-/- cells support enhanced replication of many viruses and therefore, the corresponding mice are highly susceptible to viral pathogenesis. Here, we provide evidence for an unexpected pro-microbial role of IRF3: the replication of the protozoan parasite, Toxoplasma gondii, was significantly impaired in IRF3-/- cells. In exploring whether the transcriptional activity of IRF3 was important for its pro-parasitic function, we found that ISGs induced by parasite-activated IRF3 were indeed essential, whereas type I interferons were not important. To delineate the signaling pathway that activates IRF3 in response to parasite infection, we used genetically modified human and mouse cells. The pro-parasitic signaling pathway, which we termed PISA (Parasite-IRF3 Signaling Activation), activated IRF3 without any involvement of the Toll-like receptor or RIG-I-like receptor pathways, thereby ruling out a role of parasite-derived RNA species in activating PISA. Instead, PISA needed the presence of cGAS, STING, TBK1 and IRF3, indicating the necessity of DNA-triggered signaling. To evaluate the physiological significance of our in vitro findings, IRF3-/- mice were challenged with parasite infection and their morbidity and mortality were measured. Unlike WT mice, the IRF3-/- mice did not support replication of the parasite and were resistant to pathogenesis caused by it. Our results revealed a new paradigm in which the antiviral host factor, IRF3, plays a cell-intrinsic pro-parasitic role.
Sialic acids (SAs) often exist as the terminal sugars of glycan structures of cell surface glycoproteins and glycolipids. The level and linkages of cell surface SAs, which are controlled by both sialylation and desialylation processes and environment cues, can dramatically impact cell properties and represent different cellular status. In this study, we systematically examined the sialylation and desialylation profiles of THP-1 monocytes after differentiation to M0 macrophages, and polarization to M1 and M2 macrophages by the combination of LC-MS/MS, flow cytometry and confocal microscopy. Interestingly, both α2-3- and α2-6-linked SAs on the cell surface decreased after monocytes were differentiated to macrophages, which was in accordance with the increased level of free SA in the cell culture medium and the elevated activity of endogenous Neu1 sialidase. Meanwhile, the siaoglycoconjugates inside the cells increased as confirmed by confocal microscopy and the total SA inside the cells increased as determined by LC-MS/MS. Western blot analysis showed higher expression levels of sialyltransferases, including ST3Gal-I, ST3Gal-V, ST6Gal-I and ST6GalNAc-II. Further, upon polarization, the cell surface sialylation levels of M1 and M2 macrophages remained the same as M0 macrophages, while a slight decrease of cellular SAs in the M1 macrophages but increase in the M2 macrophages were confirmed by LC-MS/MS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.