Background-We hypothesized that administration of the HCN2 gene to the left bundle-branch (LBB) system of intact dogs would provide pacemaker function in the physiological range of heart rates. Methods and Results-An adenoviral construct incorporating HCN2 and green fluorescent protein (GFP) as a marker was injected via catheter under fluoroscopic control into the posterior division of the LBB. Controls were injected with an adenoviral construct of GFP alone or saline. Animals were monitored electrocardiographically for up to 7 days after surgery, at which time they were anesthetized and subjected to vagal stimulation to permit emergence of escape pacemakers. Hearts were then removed and injection sites visually identified and removed for microelectrode study of action potentials, patch clamp studies of pacemaker current, and/or immunohistochemical studies of HCN2. For 48 hours postoperatively, 7 of 7 animals subjected to 24-hour ECG monitoring showed multiple ventricular premature depolarizations and/or ventricular tachycardia attributable to injection-induced injury. Thereafter, sinus rhythm prevailed. During vagal stimulation, HCN2-injected dogs showed rhythms originating from the left ventricle, the rate of which was significantly more rapid than in the controls. Excised posterior divisions of the LBB from HCN2-injected animals manifested automatic rates significantly greater than the controls. Isolated tissues showed immunohistochemical and biophysical evidence of overexpressed HCN2. Conclusions-A gene-therapy approach for induction of biological pacemaker activity within the LBB system provides ventricular escape rhythms that have physiologically acceptable rates. Long-term stability and feasibility of the approach remain to be tested.
Objective: Atrial fibrillation is often initiated by bursts of ectopic activity arising in the pulmonary veins. We have previously shown that a 3-h intermittent burst pacing protocol (BPP), mimicking ectopic pulmonary vein foci, shortens action potential duration (APD) locally at the pulmonary vein-atrial interface (PV) while having no effect elsewhere in rabbit atrium. This shortening is Ca 2+ dependent and is prevented by apamin, which blocks small conductance Ca 2+ -activated K + channels (SK Ca ). The present study investigates the ionic and molecular mechanisms whereby two apamin-sensitive SK Ca channels, SK2 and SK3, might contribute to the regional APD changes. Methods: Microelectrode and patch clamp techniques were used to record APDs and apamin-sensitive currents in isolated rabbit left atria and cells dispersed from PV and Bachmann's bundle (BB) regions. SK2 and SK3 mRNA and protein levels were quantified, and immunofluorescence was used to observe channel protein distribution. Results: There was a direct relationship between APD shortening and apamin-sensitive current in burst-paced but not sham-paced PV. Moreover, apamin-sensitive current density increased in PV but not BB after BPP. SK2 mRNA, protein, and current were increased in PV after BPP, while SK2 immunostaining shifted from a perinuclear pattern in sham atria to predominance at sites near or at the PV membrane. Conclusions: BPP-induced acceleration of repolarization in PV results from SK2 channel trafficking to the membrane, leading to increased apamin-sensitive outward current. This is the first indication of involvement of Ca 2+ -activated K + currents in atrial remodeling and provides a possible basis for evolution of an arrhythmogenic substrate.
Objective: Although the incidence of atrial fibrillation (AF) increases with age, the cellular electrophysiological changes that render the atria of aged individuals more susceptible to AF remain poorly understood. We hypothesized that dispersion of atrial repolarization increases with aging, creating a substrate for initiation of AF. Methods: Four groups of dogs were studied: adult and old dogs in normal sinus rhythm (SR) and adult and old dogs with chronic AF (CAF) induced by rapid atrial pacing. In each dog, action potentials (AP) were recorded with microelectrodes from isolated endocardial preparations of four regions of right atrium and three regions of left atrium. Two indices of AP duration (APD) heterogeneity were obtained in each dog by calculating standard deviation (SD) and the coefficient of variation (COV=[SD/mean]Â100%). Results: In SR groups, APD averaged across all regions was significantly longer in old than in adult tissues. Both indices of APD heterogeneity were higher in old dogs in comparison to adult. At both ages, CAF was associated with significant APD shortening and a decrease in APD adaptation to rate. While CAF significantly increased both indices of APD heterogeneity in adult dogs, it significantly decreased them in old dogs. Conclusions: The increase of spatial variability in repolarization in old atria may contribute to the initiation of AF in the aged. CAF-induced APD shortening and a decrease in APD adaptation appear to be important for the maintenance of sustained AF in both adult and old atria. The CAF-induced increase in dispersion of repolarization may be important for AF stabilization in adults, while previously reported fibrosis and slowed conduction of premature beats may be important in the old for both AF initiation during SR and subsequent stabilization of AF.
Background-Cardiac memory refers to an altered T-wave morphology induced by ventricular pacing or arrhythmias that persist for variable intervals after resumption of sinus rhythm. Methods and Results-We induced long-term cardiac memory (LTM) in conscious dogs by pacing the ventricles at 120 bpm for 3 weeks. ECGs were recorded daily for 1 hour, during which time pacing was discontinued. At terminal study, the heart was removed and the electrophysiology of left ventricular epicardial myocytes was investigated. Control (C) and LTM ECG did not differ, except for T-wave amplitude, which decreased from 0.12Ϯ0.18 to Ϫ0.34Ϯ0.21 mV (ϮSEM, PϽ0.05), and T-wave vector, which shifted from Ϫ37Ϯ12°to Ϫ143Ϯ4°(PϽ0.05). Epicardial action potentials revealed loss of the notch and lengthening of duration at 20 days (both PϽ0.05). Calcium-insensitive transient outward current (I to ) was investigated by whole-cell patch clamp. No difference in capacitance was seen in C and LTM myocytes. I to activated on membrane depolarization to Ϫ25Ϯ1 mV in C and Ϫ7Ϯ1 mV (PϽ0.05) in LTM myocytes, indicating a positive voltage shift of activation. I to density was reduced in LTM myocytes, and a decreased mRNA level for Kv4.3 was observed. Recovery of I to from inactivation was significantly prolonged: it was 531Ϯ80 ms (nϭ10) in LTM and 27Ϯ6 ms (nϭ9) in C (PϽ0.05) at Ϫ65 mV. Conclusions-I to changes are associated with and can provide at least a partial explanation for action-potential and T-wave changes occurring with LTM. (Circulation. 1999;99:1898-1905.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.